Suppr超能文献

拉曼光谱与机器学习在食管鳞癌分类中的应用。

Raman spectroscopy and machine learning for the classification of esophageal squamous carcinoma.

机构信息

Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.

Heping Hospital Affiliated to Changzhi Medical University, No. 161 Jiefang East Street, Changzhi 046000, China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2022 Nov 15;281:121654. doi: 10.1016/j.saa.2022.121654. Epub 2022 Jul 20.

Abstract

Early diagnosis of esophageal squamous cell carcinoma (ESCC), a common malignant tumor with a low overall survival rate due to metastasis and recurrence, is critical for effective treatment and improved prognosis. Raman spectroscopy, an advanced detection technology for esophageal cancer, was developed to improve diagnosis sensitivity, specificity, and accuracy. This study proposed a novel, effective, and noninvasive Raman spectroscopy technique to differentiate and classify ESCC cell lines. Seven ESCC cell lines and tissues of an ESCC patient with staging of T3N1M0 and T3N2M0 at low and high differentiation levels were investigated through Raman spectroscopy. Raman spectral data analysis was performed with four machine learning algorithms, namely principal components analysis (PCA)- linear discriminant analysis (LDA), PCA-eXtreme gradient boosting (XGB), PCA- support vector machine (SVM), and PCA- (LDA, XGB, SVM)-stacked Gradient Boosting Machine (GBM). Four machine learning algorithms were able to classifiy ESCC cell subtypes from normal esophageal cells. The PCA-XGB model achieved an overall predictive accuracy of 85% for classifying ESCC and adjacent tissues. Moreover, an overall predictive accuracy of 90.3% was achieved in distinguishing low differentiation and high differentiation ESCC tissues with the same stage when PCA-LDA, XGM, and SVM models were combined. This study illustrated the Raman spectral traits of ESCC cell lines and esophageal tissues related to clinical pathological diagnosis. Future studies should investigate the role of Raman spectral features in ESCC pathogenesis.

摘要

早期诊断食管鳞状细胞癌(ESCC)至关重要,因为其转移和复发率高,总体生存率低。拉曼光谱是一种用于检测食管癌的先进技术,旨在提高诊断的敏感性、特异性和准确性。本研究提出了一种新颖、有效、非侵入性的拉曼光谱技术,用于区分和分类 ESCC 细胞系。对 7 种 ESCC 细胞系和 1 例 T3N1M0 和 T3N2M0 分期的低分化和高分化 ESCC 患者的组织进行了拉曼光谱研究。采用主成分分析-线性判别分析(PCA-LDA)、主成分分析-极端梯度提升(PCA-XGB)、主成分分析-支持向量机(PCA-SVM)和主成分分析-(LDA、XGB、SVM)-堆叠梯度提升机(PCA-GBM)等 4 种机器学习算法对拉曼光谱数据进行了分析。四种机器学习算法能够从正常食管细胞中区分 ESCC 细胞亚型。PCA-XGB 模型对 ESCC 和相邻组织的分类预测准确率达到 85%。此外,当 PCA-LDA、XGM 和 SVM 模型联合使用时,对具有相同分期的低分化和高分化 ESCC 组织的鉴别准确率达到 90.3%。本研究说明了 ESCC 细胞系和食管组织的拉曼光谱特征与临床病理诊断相关。未来的研究应探讨拉曼光谱特征在 ESCC 发病机制中的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验