Suppr超能文献

全景流形投影(Panoramap)用于单细胞数据降维和可视化。

Panoramic Manifold Projection (Panoramap) for Single-Cell Data Dimensionality Reduction and Visualization.

机构信息

College of Mathematical Medicine, Zhejiang Normal University, Jinhua 321004, China.

School of Engineering, Westlake University, Hangzhou 310024, China.

出版信息

Int J Mol Sci. 2022 Jul 14;23(14):7775. doi: 10.3390/ijms23147775.

Abstract

Nonlinear dimensionality reduction (NLDR) methods such as t-Distributed Stochastic Neighbour Embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP) have been widely used for biological data exploration, especially in single-cell analysis. However, the existing methods have drawbacks in preserving data's geometric and topological structures. A high-dimensional data analysis method, called Panoramic manifold projection (Panoramap), was developed as an enhanced deep learning framework for structure-preserving NLDR. Panoramap enhances deep neural networks by using cross-layer geometry-preserving constraints. The constraints constitute the loss for deep manifold learning and serve as geometric regularizers for NLDR network training. Therefore, Panoramap has better performance in preserving global structures of the original data. Here, we apply Panoramap to single-cell datasets and show that Panoramap excels at delineating the cell type lineage/hierarchy and can reveal rare cell types. Panoramap can facilitate trajectory inference and has the potential to aid in the early diagnosis of tumors. Panoramap gives improved and more biologically plausible visualization and interpretation of single-cell data. Panoramap can be readily used in single-cell research domains and other research fields that involve high dimensional data analysis.

摘要

非线性降维 (NLDR) 方法,如 t 分布随机邻域嵌入 (t-SNE) 和一致流形逼近和投影 (UMAP),已广泛应用于生物数据探索,尤其是单细胞分析。然而,现有的方法在保持数据的几何和拓扑结构方面存在缺陷。一种称为全景流形投影 (Panoramap) 的高维数据分析方法被开发为一种用于保留结构的增强型深度学习框架,用于 NLDR。Panoramap 通过使用跨层几何保留约束来增强深度神经网络。这些约束构成了深度流形学习的损失,并作为 NLDR 网络训练的几何正则化器。因此,Panoramap 在保留原始数据的全局结构方面表现更好。在这里,我们将 Panoramap 应用于单细胞数据集,并表明 Panoramap 在描绘细胞类型谱系/层次结构方面表现出色,并能够揭示罕见的细胞类型。Panoramap 可以促进轨迹推断,并有可能有助于肿瘤的早期诊断。Panoramap 可以改善和更具生物学合理性地可视化和解释单细胞数据。Panoramap 可以在单细胞研究领域和涉及高维数据分析的其他研究领域中得到广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f87/9316349/dfbfa3953f2e/ijms-23-07775-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验