Suppr超能文献

前列腺癌中的谱系可塑性取决于 JAK/STAT 炎症信号通路。

Lineage plasticity in prostate cancer depends on JAK/STAT inflammatory signaling.

机构信息

Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

出版信息

Science. 2022 Sep 9;377(6611):1180-1191. doi: 10.1126/science.abn0478. Epub 2022 Aug 18.

Abstract

Drug resistance in cancer is often linked to changes in tumor cell state or lineage, but the molecular mechanisms driving this plasticity remain unclear. Using murine organoid and genetically engineered mouse models, we investigated the causes of lineage plasticity in prostate cancer and its relationship to antiandrogen resistance. We found that plasticity initiates in an epithelial population defined by mixed luminal-basal phenotype and that it depends on increased Janus kinase (JAK) and fibroblast growth factor receptor (FGFR) activity. Organoid cultures from patients with castration-resistant disease harboring mixed-lineage cells reproduce the dependency observed in mice by up-regulating luminal gene expression upon JAK and FGFR inhibitor treatment. Single-cell analysis confirms the presence of mixed-lineage cells with increased JAK/STAT (signal transducer and activator of transcription) and FGFR signaling in a subset of patients with metastatic disease, with implications for stratifying patients for clinical trials.

摘要

癌症的耐药性通常与肿瘤细胞状态或谱系的变化有关,但驱动这种可塑性的分子机制仍不清楚。我们使用鼠类类器官和基因工程小鼠模型,研究了前列腺癌谱系可塑性的原因及其与抗雄激素耐药性的关系。我们发现,可塑性起始于具有混合腔基底表型的上皮细胞群,并且它依赖于 Janus 激酶(JAK)和成纤维细胞生长因子受体(FGFR)活性的增加。来自患有去势抵抗性疾病的患者的类器官培养物通过在 JAK 和 FGFR 抑制剂治疗时上调腔基因表达,再现了在小鼠中观察到的依赖性。单细胞分析证实,在转移性疾病的一部分患者中存在具有增加的 JAK/STAT(信号转导和转录激活因子)和 FGFR 信号的混合谱系细胞,这对临床试验患者分层具有重要意义。

相似文献

1
Lineage plasticity in prostate cancer depends on JAK/STAT inflammatory signaling.
Science. 2022 Sep 9;377(6611):1180-1191. doi: 10.1126/science.abn0478. Epub 2022 Aug 18.
5
The rs1893217 IBD risk allele increases susceptibility to AIEC invasion by a JAK-STAT-CEACAM6 axis.
Gut Microbes. 2025 Dec;17(1):2526136. doi: 10.1080/19490976.2025.2526136. Epub 2025 Jul 7.
6
Deciphering TLR and JAK/STAT pathways: genetic variants and targeted therapies in COVID-19.
Mol Biol Rep. 2025 Jul 18;52(1):733. doi: 10.1007/s11033-025-10843-2.
7
Efficacy of ruxolitinib in acute lymphoblastic leukemia: A systematic review.
Leuk Res. 2022 Oct;121:106925. doi: 10.1016/j.leukres.2022.106925. Epub 2022 Aug 2.
8
Janus kinase inhibitors for the treatment of COVID-19.
Cochrane Database Syst Rev. 2022 Jun 13;6(6):CD015209. doi: 10.1002/14651858.CD015209.
10
MEX3A activates the JAK-STAT pathway to suppress NK cell cytotoxicity and accelerate lung adenocarcinoma progression.
Cell Immunol. 2025 Aug;414:104994. doi: 10.1016/j.cellimm.2025.104994. Epub 2025 Jun 16.

引用本文的文献

1
CSF2RA promotes gastric cancer progression through activation of the JAK2/STAT3 signaling pathway.
J Mol Histol. 2025 Sep 6;56(5):297. doi: 10.1007/s10735-025-10588-z.
2
5
EZH2-TTP-mTORC1 Axis Drives Phenotypic Plasticity and Therapeutic Vulnerability in Lethal Prostate Cancer.
bioRxiv. 2025 Aug 11:2025.08.07.669104. doi: 10.1101/2025.08.07.669104.
7
Concurrent genetic and non-genetic resistance mechanisms to KRAS inhibition in CRC.
bioRxiv. 2025 Aug 5:2025.08.05.668666. doi: 10.1101/2025.08.05.668666.
9
New frontiers in prostate cancer treatment from systemic therapy to targeted therapy.
EMBO Mol Med. 2025 Aug 4. doi: 10.1038/s44321-025-00282-8.
10
Uncovering phenotypic heterogeneity through research autopsy in lethal prostate cancer.
J Clin Invest. 2025 Aug 1;135(15). doi: 10.1172/JCI195102.

本文引用的文献

1
SEACells infers transcriptional and epigenomic cellular states from single-cell genomics data.
Nat Biotechnol. 2023 Dec;41(12):1746-1757. doi: 10.1038/s41587-023-01716-9. Epub 2023 Mar 27.
2
Chromatin profiles classify castration-resistant prostate cancers suggesting therapeutic targets.
Science. 2022 May 27;376(6596):eabe1505. doi: 10.1126/science.abe1505.
3
Differentiation therapy for myeloid malignancies: beyond cytotoxicity.
Blood Cancer J. 2021 Dec 4;11(12):193. doi: 10.1038/s41408-021-00584-3.
4
Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer.
Cancer Cell. 2021 Nov 8;39(11):1479-1496.e18. doi: 10.1016/j.ccell.2021.09.008. Epub 2021 Oct 14.
5
An androgen receptor switch underlies lineage infidelity in treatment-resistant prostate cancer.
Nat Cell Biol. 2021 Sep;23(9):1023-1034. doi: 10.1038/s41556-021-00743-5. Epub 2021 Sep 6.
6
Acquired Resistance to KRAS Inhibition in Cancer.
N Engl J Med. 2021 Jun 24;384(25):2382-2393. doi: 10.1056/NEJMoa2105281.
8
The cGAS-STING pathway as a therapeutic target in inflammatory diseases.
Nat Rev Immunol. 2021 Sep;21(9):548-569. doi: 10.1038/s41577-021-00524-z. Epub 2021 Apr 8.
10
Transcriptional mediators of treatment resistance in lethal prostate cancer.
Nat Med. 2021 Mar;27(3):426-433. doi: 10.1038/s41591-021-01244-6. Epub 2021 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验