Suppr超能文献

空间分辨蛋白质组学分析鉴定肿瘤细胞 CD44 为与晚期非小细胞肺癌对 PD-1 轴阻断治疗敏感性相关的生物标志物。

Spatially resolved proteomic profiling identifies tumor cell CD44 as a biomarker associated with sensitivity to PD-1 axis blockade in advanced non-small-cell lung cancer.

机构信息

Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.

Tumor Microenvironment and Immunotherapy Research Group, 12 de Octubre Research Institute (i+12), Madrid, Spain.

出版信息

J Immunother Cancer. 2022 Aug;10(8). doi: 10.1136/jitc-2022-004757.

Abstract

BACKGROUND

Most patients with advanced non-small-cell lung cancer (NSCLC) fail to derive significant benefit from programmed cell death protein-1 (PD-1) axis blockade, and new biomarkers of response are needed. In this study, we aimed to discover and validate spatially resolved protein markers associated with sensitivity to PD-1 axis inhibition in NSCLC.

METHODS

We initially assessed a discovery cohort of 56 patients with NSCLC treated with PD-1 axis inhibitors at Yale Cancer Center. Using the GeoMx Digital Spatial Profiling (DSP) system, 71 proteins were measured in spatial context on each spot in a tissue microarray. We used the AQUA method of quantitative immunofluorescence (QIF) to orthogonally validate candidate biomarkers. For external independent validation, we assessed whole tissue sections derived from 128 patients with NSCLC treated with single-agent PD-1 axis inhibitors at the 12 de Octubre Hospital (Madrid) using DSP. We further analyzed two immunotherapy untreated cohorts to address prognostic significance (n=252 from Yale Cancer Center; n=124 from University Clinic of Navarra) using QIF and DSP, respectively.

RESULTS

Using continuous log-scaled data, we identified CD44 expression in the tumor compartment (pan-cytokeratin (CK)+) as a novel predictor of prolonged progression-free survival (PFS) (multivariate HR=0.68, p=0.043) in the discovery set. We validated by QIF that tumor CD44 levels assessed as continuous QIF scores were associated with longer PFS (multivariate HR=0.31, p=0.022) and overall survival (multivariate HR=0.29, p=0.038). Using DSP in an independent immunotherapy treated cohort, we validated that CD44 levels in the tumor compartment, but not in the immune compartment (panCK-/CD45+), were associated with clinical benefit (OR=1.22, p=0.018) and extended PFS under PD-1 axis inhibition using the highest tertile cutpoint (multivariate HR=0.62, p=0.03). The effect of tumor cell CD44 in predicting PFS remained significant after correcting for programmed death-ligand 1 (PD-L1) Tumor Proportion Score (TPS) in both cohorts. High tumor cell CD44 was not prognostic in the absence of immunotherapy. Using DSP data, intratumoral regions with elevated tumor cell CD44 expression showed prominent (fold change>1.5, adjusted p<0.05) upregulation of PD-L1, TIM-3, ICOS, and CD40 in two independent cohorts.

CONCLUSIONS

This work highlights CD44 as a novel indicative biomarker of sensitivity to PD-1 axis blockade that might help to improve immunotherapy strategies for NSCLC.

摘要

背景

大多数晚期非小细胞肺癌(NSCLC)患者无法从程序性死亡蛋白-1(PD-1)轴阻断中获得显著益处,因此需要新的反应生物标志物。在这项研究中,我们旨在发现和验证与 NSCLC 中 PD-1 轴抑制敏感性相关的空间分辨蛋白标志物。

方法

我们最初在耶鲁癌症中心评估了 56 名接受 PD-1 轴抑制剂治疗的 NSCLC 患者的发现队列。使用 GeoMx 数字空间分析(DSP)系统,在组织微阵列的每个点上以空间方式测量 71 种蛋白质。我们使用定量免疫荧光(QIF)的 AQUA 方法对候选生物标志物进行正交验证。为了进行外部独立验证,我们使用来自马德里 12 月 12 日医院的 128 名接受单药 PD-1 轴抑制剂治疗的 NSCLC 患者的整个组织切片,使用 DSP 进行了评估。我们进一步使用 QIF 和 DSP 分别分析了两个未接受免疫治疗的队列,以解决预后意义(耶鲁癌症中心 n=252;纳瓦拉大学临床中心 n=124)。

结果

使用连续对数标度数据,我们在发现组中鉴定出肿瘤区室(泛细胞角蛋白(CK)+)中的 CD44 表达是延长无进展生存期(PFS)的新型预测因子(多变量 HR=0.68,p=0.043)。我们通过 QIF 验证,连续 QIF 评分评估的肿瘤 CD44 水平与更长的 PFS(多变量 HR=0.31,p=0.022)和总生存期(多变量 HR=0.29,p=0.038)相关。在接受免疫治疗的独立队列中使用 DSP,我们验证了肿瘤区室中的 CD44 水平(但免疫区室中的 CD44 水平(泛 CK-/CD45+)与临床获益(OR=1.22,p=0.018)和 PD-1 轴抑制下的延长 PFS相关(最高三分位截断点的多变量 HR=0.62,p=0.03)。在两个队列中,校正程序性死亡配体 1(PD-L1)肿瘤比例评分(TPS)后,肿瘤细胞 CD44 在预测 PFS 中的作用仍然显著。在没有免疫治疗的情况下,高肿瘤细胞 CD44 没有预后意义。使用 DSP 数据,在两个独立队列中,具有升高的肿瘤细胞 CD44 表达的肿瘤内区域表现出 PD-L1、TIM-3、ICOS 和 CD40 的明显上调(倍数变化>1.5,调整后 p<0.05)。

结论

这项工作强调了 CD44 作为 PD-1 轴阻断敏感性的新型指示性生物标志物,这可能有助于改善 NSCLC 的免疫治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cb7/9413286/53e58ca0fe00/jitc-2022-004757f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验