Suppr超能文献

输注后嵌合抗原受体 T 细胞可鉴定出对 CD19-CAR 治疗产生耐药的患者。

Post-infusion CAR T cells identify patients resistant to CD19-CAR therapy.

机构信息

Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.

Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA.

出版信息

Nat Med. 2022 Sep;28(9):1860-1871. doi: 10.1038/s41591-022-01960-7. Epub 2022 Sep 12.

Abstract

Approximately 60% of patients with large B cell lymphoma treated with chimeric antigen receptor (CAR) T cell therapies targeting CD19 experience disease progression, and neurotoxicity remains a challenge. Biomarkers associated with resistance and toxicity are limited. In this study, single-cell proteomic profiling of circulating CAR T cells in 32 patients treated with CD19-CAR identified that CD4Helios CAR T cells on day 7 after infusion are associated with progressive disease and less severe neurotoxicity. Deep profiling demonstrated that this population is non-clonal and manifests hallmark features of T regulatory (T) cells. Validation cohort analysis upheld the link between higher CAR T cells with clinical progression and less severe neurotoxicity. A model combining expansion of this subset with lactate dehydrogenase levels, as a surrogate for tumor burden, was superior for predicting durable clinical response compared to models relying on each feature alone. These data credential CAR T cell expansion as a novel biomarker of response and toxicity after CAR T cell therapy and raise the prospect that this subset may regulate CAR T cell responses in humans.

摘要

约 60%接受靶向 CD19 的嵌合抗原受体 (CAR) T 细胞疗法治疗的大 B 细胞淋巴瘤患者会出现疾病进展,神经毒性仍然是一个挑战。与耐药性和毒性相关的生物标志物有限。在这项研究中,对 32 名接受 CD19-CAR 治疗的患者的循环 CAR T 细胞进行单细胞蛋白质组学分析,发现输注后第 7 天的 CD4Helios CAR T 细胞与进行性疾病和较轻的神经毒性相关。深入分析表明,该群体是非克隆的,表现出 T 调节 (T) 细胞的标志性特征。验证队列分析支持 CAR T 细胞与临床进展和较轻的神经毒性之间存在更高关联的观点。与仅依赖于每个特征的模型相比,将该亚群的扩增与乳酸脱氢酶水平(作为肿瘤负担的替代物)相结合的模型更能预测持久的临床反应。这些数据证明 CAR T 细胞扩增是 CAR T 细胞治疗后反应和毒性的新型生物标志物,并提出了该亚群可能在人类中调节 CAR T 细胞反应的可能性。

相似文献

1
Post-infusion CAR T cells identify patients resistant to CD19-CAR therapy.
Nat Med. 2022 Sep;28(9):1860-1871. doi: 10.1038/s41591-022-01960-7. Epub 2022 Sep 12.
2
Toxicities of CD19 CAR-T cell immunotherapy.
Am J Hematol. 2019 May;94(S1):S42-S49. doi: 10.1002/ajh.25445. Epub 2019 Mar 6.
3
Insights into cytokine release syndrome and neurotoxicity after CD19-specific CAR-T cell therapy.
Curr Res Transl Med. 2018 May;66(2):50-52. doi: 10.1016/j.retram.2018.03.003. Epub 2018 Apr 3.
4
Clinical Predictors of Neurotoxicity After Chimeric Antigen Receptor T-Cell Therapy.
JAMA Neurol. 2020 Dec 1;77(12):1536-1542. doi: 10.1001/jamaneurol.2020.2703.
5
Cytokine release syndrome and neurotoxicity after CD19 chimeric antigen receptor-modified (CAR-) T cell therapy.
Br J Haematol. 2018 Nov;183(3):364-374. doi: 10.1111/bjh.15644. Epub 2018 Nov 8.
7
Clinical predictors of chimeric antigen receptor T-cell therapy neurotoxicity: a single-center study.
Immunotherapy. 2021 Oct;13(15):1261-1269. doi: 10.2217/imt-2021-0084. Epub 2021 Sep 24.
9
Clinical presentation, management, and biomarkers of neurotoxicity after adoptive immunotherapy with CAR T cells.
Blood. 2019 May 16;133(20):2212-2221. doi: 10.1182/blood-2018-12-893396. Epub 2019 Feb 26.
10
Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial.
Nat Med. 2020 Oct;26(10):1569-1575. doi: 10.1038/s41591-020-1081-3. Epub 2020 Oct 5.

引用本文的文献

1
Scvi-hub: an actionable repository for model-driven single-cell analysis.
Nat Methods. 2025 Sep 8. doi: 10.1038/s41592-025-02799-9.
2
CAR-exosomes derived from immune cells: an emerging nanoscale vanguard in overcoming tumor immunotherapy hurdles.
Front Immunol. 2025 Aug 19;16:1655095. doi: 10.3389/fimmu.2025.1655095. eCollection 2025.
3
Constructing the cure: engineering the next wave of antibody and cellular immune therapies.
J Immunother Cancer. 2025 Aug 25;13(8):e011761. doi: 10.1136/jitc-2025-011761.
5
CellFuse Enables Multi-modal Integration of Single-cell and Spatial Proteomics data.
bioRxiv. 2025 Jul 26:2025.07.23.665976. doi: 10.1101/2025.07.23.665976.
6
Comparison of axicabtagene ciloleucel and tisagenlecleucel patient CAR-T cell products by single-cell RNA sequencing.
J Immunother Cancer. 2025 Jul 28;13(7):e011807. doi: 10.1136/jitc-2025-011807.
10
Differential susceptibility and role for senescence in CART cells based on costimulatory domains.
Mol Cancer. 2025 Jun 10;24(1):172. doi: 10.1186/s12943-025-02371-1.

本文引用的文献

1
Decade-long leukaemia remissions with persistence of CD4 CAR T cells.
Nature. 2022 Feb;602(7897):503-509. doi: 10.1038/s41586-021-04390-6. Epub 2022 Feb 2.
2
Axicabtagene Ciloleucel as Second-Line Therapy for Large B-Cell Lymphoma.
N Engl J Med. 2022 Feb 17;386(7):640-654. doi: 10.1056/NEJMoa2116133. Epub 2021 Dec 11.
3
An NK-like CAR T cell transition in CAR T cell dysfunction.
Cell. 2021 Dec 9;184(25):6081-6100.e26. doi: 10.1016/j.cell.2021.11.016. Epub 2021 Dec 2.
4
The reactome pathway knowledgebase 2022.
Nucleic Acids Res. 2022 Jan 7;50(D1):D687-D692. doi: 10.1093/nar/gkab1028.
5
8
Integrated analysis of multimodal single-cell data.
Cell. 2021 Jun 24;184(13):3573-3587.e29. doi: 10.1016/j.cell.2021.04.048. Epub 2021 May 31.
10
Point mutation in facilitates immune escape of B cell lymphoma from CAR-T cell therapy.
J Immunother Cancer. 2020 Oct;8(2). doi: 10.1136/jitc-2020-001150.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验