Suppr超能文献

通过对半笼状血红素主体-客体配合物的气相结合能的研究对更高能量碰撞解离(HCD)进行基准测试。

Benchmarking higher energy collision dissociation (HCD) by investigation of binding energies of gas-phase host-guest complexes of hemicryptophane cages.

机构信息

Institut Parisien de Chimie Moléculaire, Sorbonne Université, UMR 8232, CNRS, Paris, France.

Département de Chimie Moléculaire, Université Grenoble Alpes, UMR 5250, CNRS, Grenoble, France.

出版信息

J Mass Spectrom. 2022 Sep;57(9):e4879. doi: 10.1002/jms.4879.

Abstract

Synthesis of host molecules that feature well-defined characteristics for molecular recognition of guest molecules is often a major aim of synthetic host-guest (H-G) chemistry. A key consideration in evaluating the selectivity of hosts and the affinities of guests is the measurement of binding energies of obtained H-G complexes. In contrast to nuclear magnetic resonance (NMR) or fluorescence measurements that are capable of measuring binding strengths in solution, mass spectrometry offers the opportunity to measure gas-phase binding energies. Presented in this article is a higher energy collision dissociation (HCD) approach for determining critical energies of dissociation of H-G complexes. Experiments were performed on electrospray ionization (ESI)-generated H-G pairs in an LTQ-XL/Orbitrap hybrid instrument. The presented HCD approach requires preliminary calibration of the internal energy distribution of generated ions that was achieved by the use of activation parameters that were known from previous low-energy collision-induced dissociation (low-energy CID) experiments. Internal energy deposition was modeled based on a truncated Maxwell-Boltzmann distribution and characteristic temperature (T ). Using this method, critical energies of dissociation were determined for 10 H-G biologically relevant complexes of the heteroditopic hemicryptophane cage host (Host). Obtained results are compared with those found previously by low-energy CID. The use of this HCD technique is relatively straightforward, although its implementation does require knowledge (or a presumption) about the Arrhenius pre-exponential factor of the complexes to obtain their critical energies of dissociation.

摘要

合成具有明确特征的主体分子,以实现客体分子的分子识别,通常是合成主客体(H-G)化学的主要目标。评估主体的选择性和客体的亲和力的一个关键考虑因素是测量所得 H-G 配合物的结合能。与能够测量溶液中结合强度的核磁共振(NMR)或荧光测量不同,质谱法提供了测量气相结合能的机会。本文介绍了一种用于确定 H-G 配合物离解关键能量的更高能量碰撞解离(HCD)方法。在 LTQ-XL/Orbitrap 混合仪器上进行了电喷雾电离(ESI)产生的 H-G 对的实验。所提出的 HCD 方法需要对生成离子的内部能量分布进行初步校准,这是通过使用先前低能量碰撞诱导解离(低能量 CID)实验中已知的活化参数来实现的。基于截断的麦克斯韦-玻尔兹曼分布和特征温度(T)来模拟内部能量沉积。使用这种方法,确定了 10 种异二价半cryptophane 笼主体(Host)的生物相关 H-G 配合物的离解关键能量。所得结果与先前通过低能量 CID 发现的结果进行了比较。尽管该方法的实施确实需要关于配合物的阿雷尼乌斯指数前因子的知识(或假设)才能获得其离解关键能量,但使用这种 HCD 技术相对简单。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验