Suppr超能文献

RadicalSAM.org:一个用于解释序列-功能空间并发现新的自由基S-腺苷甲硫氨酸酶化学的资源。

RadicalSAM.org: A Resource to Interpret Sequence-Function Space and Discover New Radical SAM Enzyme Chemistry.

作者信息

Oberg Nils, Precord Timothy W, Mitchell Douglas A, Gerlt John A

机构信息

Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States.

Department of Chemistry, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States.

出版信息

ACS Bio Med Chem Au. 2022 Feb 16;2(1):22-35. doi: 10.1021/acsbiomedchemau.1c00048. Epub 2021 Dec 17.

Abstract

The radical SAM superfamily (RSS), arguably the most functionally diverse enzyme superfamily, is also one of the largest with ~700K members currently in the UniProt database. The vast majority of the members have uncharacterized enzymatic activities and metabolic functions. In this Perspective, we describe RadicalSAM.org, a new web-based resource that enables a user-friendly genomic enzymology strategy to explore sequence-function space in the RSS. The resource attempts to enable identification of isofunctional groups of radical SAM enzymes using sequence similarity networks (SSNs) and the genome context of the bacterial, archaeal, and fungal members provided by genome neighborhood diagrams (GNDs). Enzymatic activities and functions frequently can be inferred from genome context given the tendency for genes of related function to be clustered. We invite the scientific community to use RadicalSAM.org to guide their experimental studies to discover new enzymatic activities and metabolic functions, contribute experimentally verified annotations to RadicalSAM.org to enhance the ability to predict novel activities and functions, and provide suggestions for improving this resource.

摘要

自由基S-腺苷甲硫氨酸超家族(RSS)可以说是功能最多样化的酶超家族,也是目前UniProt数据库中最大的超家族之一,约有70万个成员。绝大多数成员具有未表征的酶活性和代谢功能。在本观点文章中,我们介绍了RadicalSAM.org,这是一个新的基于网络的资源,它能实现一种用户友好的基因组酶学策略,以探索RSS中的序列-功能空间。该资源试图利用序列相似性网络(SSN)以及基因组邻域图(GND)提供的细菌、古菌和真菌成员的基因组背景,来识别自由基SAM酶的同功能基团。鉴于相关功能的基因有聚集的趋势,酶活性和功能通常可以从基因组背景中推断出来。我们邀请科学界使用RadicalSAM.org来指导他们的实验研究,以发现新的酶活性和代谢功能,为RadicalSAM.org贡献经实验验证的注释,以增强预测新活性和功能的能力,并为改进该资源提供建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b89e/10114713/bb3b815b460d/bg1c00048_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验