Suppr超能文献

梅林:从时间序列数据中推断代谢调节规则。

MERRIN: MEtabolic regulation rule INference from time series data.

机构信息

INRIA, CNRS, IRISA, University of Rennes, Rennes F-35000, France.

LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan F-31326, France.

出版信息

Bioinformatics. 2022 Sep 16;38(Suppl_2):ii127-ii133. doi: 10.1093/bioinformatics/btac479.

Abstract

MOTIVATION

Many techniques have been developed to infer Boolean regulations from a prior knowledge network (PKN) and experimental data. Existing methods are able to reverse-engineer Boolean regulations for transcriptional and signaling networks, but they fail to infer regulations that control metabolic networks.

RESULTS

We present a novel approach to infer Boolean rules for metabolic regulation from time-series data and a PKN. Our method is based on a combination of answer set programming and linear programming. By solving both combinatorial and linear arithmetic constraints, we generate candidate Boolean regulations that can reproduce the given data when coupled to the metabolic network. We evaluate our approach on a core regulated metabolic network and show how the quality of the predictions depends on the available kinetic, fluxomics or transcriptomics time-series data.

AVAILABILITY AND IMPLEMENTATION

Software available at https://github.com/bioasp/merrin.

SUPPLEMENTARY INFORMATION

Supplementary data are available at https://doi.org/10.5281/zenodo.6670164.

摘要

动机

已经开发了许多技术来从先验知识网络 (PKN) 和实验数据中推断布尔规则。现有的方法能够为转录和信号网络反向工程布尔规则,但它们无法推断控制代谢网络的规则。

结果

我们提出了一种从时间序列数据和 PKN 推断代谢调控布尔规则的新方法。我们的方法基于答案集编程和线性规划的组合。通过求解组合和线性算术约束,我们生成了候选布尔规则,当与代谢网络耦合时,这些规则可以再现给定数据。我们在核心调控代谢网络上评估了我们的方法,并展示了预测的质量如何取决于可用的动力学、通量组学或转录组学时间序列数据。

可用性和实现

软件可在 https://github.com/bioasp/merrin 上获得。

补充信息

补充数据可在 https://doi.org/10.5281/zenodo.6670164 获得。

相似文献

1
MERRIN: MEtabolic regulation rule INference from time series data.
Bioinformatics. 2022 Sep 16;38(Suppl_2):ii127-ii133. doi: 10.1093/bioinformatics/btac479.
2
A novel constrained genetic algorithm-based Boolean network inference method from steady-state gene expression data.
Bioinformatics. 2021 Jul 12;37(Suppl_1):i383-i391. doi: 10.1093/bioinformatics/btab295.
4
ATEN: And/Or tree ensemble for inferring accurate Boolean network topology and dynamics.
Bioinformatics. 2020 Jan 15;36(2):578-585. doi: 10.1093/bioinformatics/btz563.
5
A neuro-evolution approach to infer a Boolean network from time-series gene expressions.
Bioinformatics. 2020 Dec 30;36(Suppl_2):i762-i769. doi: 10.1093/bioinformatics/btaa840.
6
Boolean network sketches: a unifying framework for logical model inference.
Bioinformatics. 2023 Apr 3;39(4). doi: 10.1093/bioinformatics/btad158.
8
lpNet: a linear programming approach to reconstruct signal transduction networks.
Bioinformatics. 2015 Oct 1;31(19):3231-3. doi: 10.1093/bioinformatics/btv327. Epub 2015 May 29.
9
Integer programming-based method for designing synthetic metabolic networks by Minimum Reaction Insertion in a Boolean model.
PLoS One. 2014 Mar 20;9(3):e92637. doi: 10.1371/journal.pone.0092637. eCollection 2014.
10
SBbadger: biochemical reaction networks with definable degree distributions.
Bioinformatics. 2022 Nov 15;38(22):5064-5072. doi: 10.1093/bioinformatics/btac630.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验