Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA.
Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32608, USA.
Toxicol Sci. 2023 Jan 31;191(1):1-14. doi: 10.1093/toxsci/kfac101.
Physiologically based pharmacokinetic (PBPK) models are useful tools in drug development and risk assessment of environmental chemicals. PBPK model development requires the collection of species-specific physiological, and chemical-specific absorption, distribution, metabolism, and excretion (ADME) parameters, which can be a time-consuming and expensive process. This raises a need to create computational models capable of predicting input parameter values for PBPK models, especially for new compounds. In this review, we summarize an emerging paradigm for integrating PBPK modeling with machine learning (ML) or artificial intelligence (AI)-based computational methods. This paradigm includes 3 steps (1) obtain time-concentration PK data and/or ADME parameters from publicly available databases, (2) develop ML/AI-based approaches to predict ADME parameters, and (3) incorporate the ML/AI models into PBPK models to predict PK summary statistics (eg, area under the curve and maximum plasma concentration). We also discuss a neural network architecture "neural ordinary differential equation (Neural-ODE)" that is capable of providing better predictive capabilities than other ML methods when used to directly predict time-series PK profiles. In order to support applications of ML/AI methods for PBPK model development, several challenges should be addressed (1) as more data become available, it is important to expand the training set by including the structural diversity of compounds to improve the prediction accuracy of ML/AI models; (2) due to the black box nature of many ML models, lack of sufficient interpretability is a limitation; (3) Neural-ODE has great potential to be used to generate time-series PK profiles for new compounds with limited ADME information, but its application remains to be explored. Despite existing challenges, ML/AI approaches will continue to facilitate the efficient development of robust PBPK models for a large number of chemicals.
基于生理学的药代动力学(PBPK)模型是药物开发和环境化学风险评估的有用工具。PBPK 模型的开发需要收集特定于物种的生理学和化学特异性吸收、分布、代谢和排泄(ADME)参数,这可能是一个耗时且昂贵的过程。这就需要创建能够预测 PBPK 模型输入参数值的计算模型,特别是对于新化合物。在这篇综述中,我们总结了将 PBPK 建模与基于机器学习(ML)或人工智能(AI)的计算方法相结合的新兴范例。该范例包括 3 个步骤:(1)从公开数据库中获取时间浓度 PK 数据和/或 ADME 参数;(2)开发基于 ML/AI 的方法来预测 ADME 参数;(3)将 ML/AI 模型纳入 PBPK 模型以预测 PK 汇总统计数据(例如,曲线下面积和最大血浆浓度)。我们还讨论了神经网络架构“神经常微分方程(Neural-ODE)”,当用于直接预测时间序列 PK 曲线时,它比其他 ML 方法具有更好的预测能力。为了支持 ML/AI 方法在 PBPK 模型开发中的应用,应解决以下几个挑战:(1)随着更多数据的出现,通过包括化合物的结构多样性来扩展训练集对于提高 ML/AI 模型的预测准确性非常重要;(2)由于许多 ML 模型的黑盒性质,缺乏足够的可解释性是一个限制;(3)Neural-ODE 具有很大的潜力可用于生成具有有限 ADME 信息的新化合物的时间序列 PK 曲线,但仍有待探索其应用。尽管存在挑战,但 ML/AI 方法将继续促进大量化学物质的稳健 PBPK 模型的高效开发。