Suppr超能文献

使用透明质酸纳米粒子抑制 NADPH 氧化酶-ROS 信号以克服癌症治疗中的放射抵抗性。

Inhibition of NADPH Oxidase-ROS Signal using Hyaluronic Acid Nanoparticles for Overcoming Radioresistance in Cancer Therapy.

机构信息

Department of Surgery and Winship Cancer Institute, Emory University School of Medicine, Atlanta 30322, Georgia, United States.

Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.

出版信息

ACS Nano. 2022 Nov 22;16(11):18708-18728. doi: 10.1021/acsnano.2c07440. Epub 2022 Oct 18.

Abstract

Upregulation of NADPH oxidases (NOXs) in cancer cells leads to chronic increase in intracellular reactive oxygen species (ROS) and adaptation to a high ROS level for cell survival and, thereby, low sensitivity to radiotherapy. To overcome resistance to radiotherapy, we have developed a bioactive and CD44 targeted hyaluronic acid nanoparticle encapsulated with an NOX inhibitor, GKT831 (HANP/GKT831). We found that HANP/GKT831 had stronger inhibitory effects on ROS generation and cell proliferation than that of GKT831 alone in cancer cells. Systemic delivery of HANP/GKT831 led to the targeted accumulation in breast cancer patient derived xenograft (PDX) tumors in nude mice. Importantly, the combination of systemic delivery of HANP/GKT831 with a low dose of local radiotherapy significantly enhanced tumor growth inhibition in breast cancer PDX models. Our results showed that HANP/GKT831 primed tumor cells to radiation-induced DNA damage and cell death by downregulation of DNA repair function and oncogenic signal pathways.

摘要

在癌细胞中,NADPH 氧化酶(NOXs)的上调导致细胞内活性氧(ROS)的慢性增加,并适应高 ROS 水平以维持细胞存活,从而使细胞对放射疗法的敏感性降低。为了克服放射疗法的耐药性,我们开发了一种具有生物活性且靶向 CD44 的透明质酸纳米颗粒,其中包裹了一种 NOX 抑制剂 GKT831(HANP/GKT831)。我们发现,与单独使用 GKT831 相比,HANP/GKT831 对 ROS 产生和癌细胞增殖具有更强的抑制作用。HANP/GKT831 的系统给药导致其在裸鼠中的乳腺癌患者来源异种移植(PDX)肿瘤中有靶向积累。重要的是,HANP/GKT831 的系统给药与低剂量局部放射治疗相结合,显著增强了乳腺癌 PDX 模型中的肿瘤生长抑制作用。我们的结果表明,HANP/GKT831 通过下调 DNA 修复功能和致癌信号通路,使肿瘤细胞对辐射诱导的 DNA 损伤和细胞死亡产生敏感性。

相似文献

1
Inhibition of NADPH Oxidase-ROS Signal using Hyaluronic Acid Nanoparticles for Overcoming Radioresistance in Cancer Therapy.
ACS Nano. 2022 Nov 22;16(11):18708-18728. doi: 10.1021/acsnano.2c07440. Epub 2022 Oct 18.
2
NADPH Oxidases NOXs and DUOXs as putative targets for cancer therapy.
Anticancer Agents Med Chem. 2013 Mar;13(3):502-14.
3
MicroRNA Targeting Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Cancer.
Antioxid Redox Signal. 2020 Feb 10;32(5):267-284. doi: 10.1089/ars.2019.7918. Epub 2019 Nov 21.
4
Construction and Evaluation of a Targeted Hyaluronic Acid Nanoparticle/Photosensitizer Complex for Cancer Photodynamic Therapy.
ACS Appl Mater Interfaces. 2017 Sep 27;9(38):32509-32519. doi: 10.1021/acsami.7b09331. Epub 2017 Sep 12.
5
NADPH Oxidase as a Target for Modulation of Radiation Response; Implications to Carcinogenesis and Radiotherapy.
Curr Mol Pharmacol. 2019;12(1):50-60. doi: 10.2174/1874467211666181010154709.
6
NADPH oxidases regulate CD44 and hyaluronic acid expression in thrombin-treated vascular smooth muscle cells and in atherosclerosis.
J Biol Chem. 2010 Aug 20;285(34):26545-57. doi: 10.1074/jbc.M110.143917. Epub 2010 Jun 17.
8
Nanotubes-Embedded Indocyanine Green-Hyaluronic Acid Nanoparticles for Photoacoustic-Imaging-Guided Phototherapy.
ACS Appl Mater Interfaces. 2016 Mar 2;8(8):5608-17. doi: 10.1021/acsami.5b12400. Epub 2016 Feb 19.
9
Contribution of Dual Oxidase 2 (DUOX2) to Hyper-Radiosensitivity in Human Gastric Cancer Cells.
Radiat Res. 2015 Aug;184(2):151-60. doi: 10.1667/rr13661.1. Epub 2015 Jul 24.

引用本文的文献

1
Antioxidant Intervention Against Microplastic Hazards.
Antioxidants (Basel). 2025 Jun 27;14(7):797. doi: 10.3390/antiox14070797.
2
Harnessing the interaction between redox signaling and senescence to restrain tumor drug resistance.
Front Cell Dev Biol. 2025 Jul 9;13:1639772. doi: 10.3389/fcell.2025.1639772. eCollection 2025.
3
Nanomedicine-Driven Modulation of Reductive Stress for Cancer Therapy.
Adv Sci (Weinh). 2025 Aug;12(32):e01968. doi: 10.1002/advs.202501968. Epub 2025 Jun 26.
5
NADPH oxidase activator 1 (NOXA1) suppresses ferroptosis and radiosensitization in colorectal cancer.
Int J Med Sci. 2025 Feb 18;22(6):1301-1312. doi: 10.7150/ijms.107038. eCollection 2025.
6
Role of Oxidative Stress in the Occurrence, Development, and Treatment of Breast Cancer.
Antioxidants (Basel). 2025 Jan 17;14(1):104. doi: 10.3390/antiox14010104.
7
Complexed hyaluronic acid-based nanoparticles in cancer therapy and diagnosis: Research trends by natural language processing.
Heliyon. 2024 Dec 18;11(1):e41246. doi: 10.1016/j.heliyon.2024.e41246. eCollection 2025 Jan 15.
8
A reactive oxygen species-related signature predicts the prognosis and immunosuppressive microenvironment in gliomas.
Redox Rep. 2024 Dec;29(1):2433396. doi: 10.1080/13510002.2024.2433396. Epub 2024 Nov 28.
9
Cationic Metal-Organic Layer Delivers siRNAs to Overcome Radioresistance and Potentiate Cancer Radiotherapy.
Angew Chem Int Ed Engl. 2025 Feb 10;64(7):e202419409. doi: 10.1002/anie.202419409. Epub 2024 Nov 21.
10
Research progress on factors affecting the sensitivity of breast cancer to radiotherapy: a narrative review.
Transl Cancer Res. 2024 Jul 31;13(7):3869-3888. doi: 10.21037/tcr-24-71. Epub 2024 Jul 16.

本文引用的文献

1
Emerging Treatment Strategies for Patients With Primary Biliary Cholangitis.
Gastroenterol Hepatol (N Y). 2021 Dec;17(12):598-601.
2
Harnessing cytokines and chemokines for cancer therapy.
Nat Rev Clin Oncol. 2022 Apr;19(4):237-253. doi: 10.1038/s41571-021-00588-9. Epub 2022 Jan 7.
3
Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer.
Nat Rev Clin Oncol. 2022 Feb;19(2):114-131. doi: 10.1038/s41571-021-00579-w. Epub 2021 Nov 24.
4
Role of lysophosphatidic acid and its receptors in health and disease: novel therapeutic strategies.
Signal Transduct Target Ther. 2021 Feb 1;6(1):45. doi: 10.1038/s41392-020-00367-5.
5
Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer.
Nat Commun. 2020 May 15;11(1):2416. doi: 10.1038/s41467-020-16199-4.
6
Overexpression of HMGA2 in breast cancer promotes cell proliferation, migration, invasion and stemness.
Expert Opin Ther Targets. 2020 Mar;24(3):255-265. doi: 10.1080/14728222.2020.1736559. Epub 2020 Mar 14.
7
Toll-like Receptors from the Perspective of Cancer Treatment.
Cancers (Basel). 2020 Jan 27;12(2):297. doi: 10.3390/cancers12020297.
8
9
EPR-mediated tumor targeting using ultrasmall-hybrid nanoparticles: From animal to human with theranostic AGuIX nanoparticles.
Theranostics. 2020 Jan 1;10(3):1319-1331. doi: 10.7150/thno.37543. eCollection 2020.
10
Phagocytosis checkpoints as new targets for cancer immunotherapy.
Nat Rev Cancer. 2019 Oct;19(10):568-586. doi: 10.1038/s41568-019-0183-z. Epub 2019 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验