Suppr超能文献

用于发现靶蛋白共价抑制剂的基于三嗪的共价DNA编码文库

Triazine-Based Covalent DNA-Encoded Libraries for Discovery of Covalent Inhibitors of Target Proteins.

作者信息

Li Linjie, Su Mingbo, Lu Weiwei, Song Hongzhi, Liu Jiaxiang, Wen Xin, Suo Yanrui, Qi Jingjing, Luo Xiaomin, Zhou Yu-Bo, Liao Xin-Hua, Li Jia, Lu Xiaojie

机构信息

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, P. R. China.

School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.

出版信息

ACS Med Chem Lett. 2022 Aug 15;13(10):1574-1581. doi: 10.1021/acsmedchemlett.2c00127. eCollection 2022 Oct 13.

Abstract

Since ibrutinib was approved by the FDA as an effective monotherapy for chronic lymphocytic leukemia (CLL) and multilymphoma, more and more FDA-approved covalent drugs are coming back into the market. On this occasion, the resurgence of interest in covalent drugs calls for more hit discovery techniques. However, the limited numbers of covalent libraries prevent the development of this area. Herein, we report the design of covalent DNA-encoded library (DEL) and its selection method for the discovery of covalent inhibitors for target proteins. These triazine-based covalent DELs yielded potent compounds after covalent selection against target proteins, including Bruton's Tyrosine Kinase (BTK), Janus kinase 3 (JAK3), and peptidyl-prolyl cis/trans isomerase NIMA-interacting-1 (Pin1).

摘要

自从依鲁替尼被美国食品药品监督管理局(FDA)批准作为慢性淋巴细胞白血病(CLL)和多种淋巴瘤的有效单药疗法以来,越来越多经FDA批准的共价药物重新进入市场。在这种情况下,对共价药物兴趣的复苏需要更多的命中发现技术。然而,共价文库数量有限阻碍了该领域的发展。在此,我们报告了共价DNA编码文库(DEL)的设计及其用于发现靶蛋白共价抑制剂的筛选方法。这些基于三嗪的共价DEL在针对靶蛋白进行共价筛选后产生了强效化合物,包括布鲁顿酪氨酸激酶(BTK)、Janus激酶3(JAK3)和肽基脯氨酰顺/反异构酶NIMA相互作用蛋白1(Pin1)。

相似文献

1
Triazine-Based Covalent DNA-Encoded Libraries for Discovery of Covalent Inhibitors of Target Proteins.
ACS Med Chem Lett. 2022 Aug 15;13(10):1574-1581. doi: 10.1021/acsmedchemlett.2c00127. eCollection 2022 Oct 13.
2
Bruton's Tyrosine Kinase Inhibitors Impair FcγRIIA-Driven Platelet Responses to Bacteria in Chronic Lymphocytic Leukemia.
Front Immunol. 2021 Nov 29;12:766272. doi: 10.3389/fimmu.2021.766272. eCollection 2021.
3
BCL-2 Inhibition as Treatment for Chronic Lymphocytic Leukemia.
Curr Treat Options Oncol. 2021 Jun 10;22(8):66. doi: 10.1007/s11864-021-00862-z.
4
ABPP-CoDEL: Activity-Based Proteome Profiling-Guided Discovery of Tyrosine-Targeting Covalent Inhibitors from DNA-Encoded Libraries.
J Am Chem Soc. 2023 Nov 22;145(46):25283-25292. doi: 10.1021/jacs.3c08852. Epub 2023 Oct 19.
6
Novel irreversible covalent BTK inhibitors discovered using DNA-encoded chemistry.
Bioorg Med Chem. 2021 Jul 15;42:116223. doi: 10.1016/j.bmc.2021.116223. Epub 2021 May 19.
7
Noncatalytic Bruton's tyrosine kinase activates PLCγ variants mediating ibrutinib resistance in human chronic lymphocytic leukemia cells.
J Biol Chem. 2020 Apr 24;295(17):5717-5736. doi: 10.1074/jbc.RA119.011946. Epub 2020 Mar 17.
9
Pharmacokinetic and pharmacodynamic evaluation of ibrutinib for the treatment of chronic lymphocytic leukemia: rationale for lower doses.
Expert Opin Drug Metab Toxicol. 2016 Nov;12(11):1381-1392. doi: 10.1080/17425255.2016.1239717. Epub 2016 Oct 11.
10
Covalent Inhibition by a Natural Product-Inspired Latent Electrophile.
J Am Chem Soc. 2023 May 24;145(20):11097-11109. doi: 10.1021/jacs.3c00598. Epub 2023 May 15.

引用本文的文献

2
Triazine Macrocycle Libraries: Synthesis, logD Prediction, and a Surprisingly Hydrophobic, Membrane-Permeable Diamine.
ACS Med Chem Lett. 2025 Jun 2;16(6):1017-1023. doi: 10.1021/acsmedchemlett.5c00078. eCollection 2025 Jun 12.
3
An mRNA Display Approach for Covalent Targeting of a Virulence Factor.
J Am Chem Soc. 2025 Mar 12;147(10):8312-8325. doi: 10.1021/jacs.4c15713. Epub 2025 Feb 27.
4
Identification of Structurally Novel KRAS Inhibitors through Covalent DNA-Encoded Library Screening.
J Med Chem. 2025 Feb 27;68(4):4801-4817. doi: 10.1021/acs.jmedchem.4c03071. Epub 2025 Feb 11.
5
An mRNA Display Approach for Covalent Targeting of a Virulence Factor.
bioRxiv. 2024 Nov 8:2024.11.06.622387. doi: 10.1101/2024.11.06.622387.
6
Covalent DNA-Encoded Library Workflow Drives Discovery of SARS-CoV-2 Nonstructural Protein Inhibitors.
J Am Chem Soc. 2024 Dec 11;146(49):33983-33996. doi: 10.1021/jacs.4c12992. Epub 2024 Nov 22.
7
Highly Selective Novel Heme Oxygenase-1 Hits Found by DNA-Encoded Library Machine Learning beyond the DEL Chemical Space.
ACS Med Chem Lett. 2024 Aug 21;15(9):1456-1466. doi: 10.1021/acsmedchemlett.4c00121. eCollection 2024 Sep 12.
8
DNA encoded peptide library for SARS-CoV-2 3CL protease covalent inhibitor discovery and profiling.
RSC Chem Biol. 2024 Jun 11;5(7):691-702. doi: 10.1039/d4cb00097h. eCollection 2024 Jul 3.
9
Design, Construction, and Screening of Diversified Pyrimidine-Focused DNA-Encoded Libraries.
ACS Med Chem Lett. 2023 Jul 27;14(8):1073-1078. doi: 10.1021/acsmedchemlett.3c00205. eCollection 2023 Aug 10.
10
Covalent Inhibitors for Neglected Diseases: An Exploration of Novel Therapeutic Options.
Pharmaceuticals (Basel). 2023 Jul 19;16(7):1028. doi: 10.3390/ph16071028.

本文引用的文献

1
Discovery of SARS-CoV-2 main protease covalent inhibitors from a DNA-encoded library selection.
SLAS Discov. 2022 Mar;27(2):79-85. doi: 10.1016/j.slasd.2022.01.001. Epub 2022 Jan 19.
2
Targeting Pin1 renders pancreatic cancer eradicable by synergizing with immunochemotherapy.
Cell. 2021 Sep 2;184(18):4753-4771.e27. doi: 10.1016/j.cell.2021.07.020. Epub 2021 Aug 12.
3
Novel irreversible covalent BTK inhibitors discovered using DNA-encoded chemistry.
Bioorg Med Chem. 2021 Jul 15;42:116223. doi: 10.1016/j.bmc.2021.116223. Epub 2021 May 19.
4
Discovery of soluble epoxide hydrolase inhibitors through DNA-encoded library technology (ELT).
Bioorg Med Chem. 2021 Jul 1;41:116216. doi: 10.1016/j.bmc.2021.116216. Epub 2021 May 13.
5
Sulfopin is a covalent inhibitor of Pin1 that blocks Myc-driven tumors in vivo.
Nat Chem Biol. 2021 Sep;17(9):954-963. doi: 10.1038/s41589-021-00786-7. Epub 2021 May 10.
7
10 years into the resurgence of covalent drugs.
Future Med Chem. 2021 Jan;13(2):193-210. doi: 10.4155/fmc-2020-0236. Epub 2020 Dec 4.
8
Design, synthesis and biological evaluation of novel thiazole-based derivatives as human Pin1 inhibitors.
Bioorg Med Chem. 2021 Jan 1;29:115878. doi: 10.1016/j.bmc.2020.115878. Epub 2020 Nov 18.
9
DNA-Encoded Chemistry: Drug Discovery from a Few Good Reactions.
Chem Rev. 2021 Jun 23;121(12):7155-7177. doi: 10.1021/acs.chemrev.0c00789. Epub 2020 Oct 12.
10
PIN1 in Cell Cycle Control and Cancer.
Front Pharmacol. 2018 Nov 26;9:1367. doi: 10.3389/fphar.2018.01367. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验