Suppr超能文献

LDHA 是胰腺腺癌免疫反应的预后生物标志物,并与 m6A 修饰相关。

LDHA is a prognostic biomarker on the immune response in pancreatic adenocarcinoma and associated with m6A modification.

机构信息

Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China.

Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.

出版信息

J Cancer Res Clin Oncol. 2023 Jul;149(8):4853-4865. doi: 10.1007/s00432-022-04400-8. Epub 2022 Oct 21.

Abstract

PURPOSE

N6-methyladenosine (mA) is tightly associated with the progression of pancreatic ductal adenocarcinoma (PDAC). Another prominent feature of PDAC is metabolic reprogramming, which provides sufficient nutrients to support rapid cell growth via the tumor microenvironment. However, the underlying influences of mA-associated metabolic genes on the PDAC microenvironment remain poorly understood. Therefore, we sought to construct a survival prediction model using mA-related genes to clarify the molecular characteristics of PDAC.

METHODS

In the present study, mA-related metabolic genes were obtained from The Cancer Genome Atlas (TCGA) pancreatic adenocarcinoma dataset and subjected to coexpression analysis. Consensus clustering recognized two distinct subgroups with different immune cell infiltration patterns according to the expression of mA-associated metabolic genes. Multivariate Cox regression analyses and least absolute shrinkage and selection operator (LASSO) analysis were adopted to create an mA-related metabolism model. A nomogram including clinical features and the risk score based on the expression of mA-related metabolism regulators was constructed.

RESULTS

A four-gene signature comprising ATP8B2, GMPS, LDHA and SDR39U1 was built to predict the overall survival (OS) of PDAC patients. This signature also robustly predicted survival in two independent validation cohorts from the International Cancer Genome Consortium (ICGC) and ArrayExpress (E-MTAB-6134). The four-gene signature divided patients into high- and low-risk groups with distinct OS values as verified by the log-rank test. Among the four genes, LDHA was upregulated in both PDAC tissues and cell lines.

CONCLUSIONS

Collectively, we analyzed the immune microenvironment, predicted drug sensitivity and assessed the implications of the mutation landscape based on the crosstalk between mA regulators and metabolic rewiring, and we also constructed a novel signature based on mA-associated metabolic genes to predict PDAC prognosis.

摘要

目的

N6-甲基腺苷(mA)与胰腺导管腺癌(PDAC)的进展密切相关。PDAC 的另一个突出特征是代谢重编程,它通过肿瘤微环境为快速细胞生长提供足够的营养。然而,mA 相关代谢基因对 PDAC 微环境的潜在影响仍知之甚少。因此,我们试图构建一个基于 mA 相关基因的生存预测模型,以阐明 PDAC 的分子特征。

方法

本研究从癌症基因组图谱(TCGA)胰腺腺癌数据集获得 mA 相关代谢基因,并进行共表达分析。根据 mA 相关代谢基因的表达,共识聚类识别出具有不同免疫细胞浸润模式的两个不同亚群。采用多变量 Cox 回归分析和最小绝对收缩和选择算子(LASSO)分析构建 mA 相关代谢模型。构建了一个包含临床特征和基于 mA 相关代谢调节剂表达的风险评分的列线图。

结果

构建了一个由 ATP8B2、GMPS、LDHA 和 SDR39U1 四个基因组成的signature,用于预测 PDAC 患者的总生存期(OS)。该 signature 还在来自国际癌症基因组联盟(ICGC)和 ArrayExpress(E-MTAB-6134)的两个独立验证队列中稳健地预测了生存。通过对数秩检验验证,四个基因signature 将患者分为高风险和低风险组,两组的 OS 值存在显著差异。在这四个基因中,LDHA 在 PDAC 组织和细胞系中均上调。

结论

综上所述,我们分析了免疫微环境,预测了药物敏感性,并根据 mA 调节剂与代谢重排之间的相互作用评估了突变景观的影响,我们还构建了一个基于 mA 相关代谢基因的新 signature,用于预测 PDAC 的预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验