Molecular Informatics Group, Fondazione Ri.MED, Via Filippo Marini 14, 90128, Palermo, Italy.
Sci Rep. 2022 Oct 25;12(1):17877. doi: 10.1038/s41598-022-22324-8.
The family of protein kinases comprises more than 500 genes involved in numerous functions. Hence, their physiological dysfunction has paved the way toward drug discovery for cancer, cardiovascular, and inflammatory diseases. As a matter of fact, Kinase binding sites high similarity has a double role. On the one hand it is a critical issue for selectivity, on the other hand, according to poly-pharmacology, a synergistic controlled effect on more than one target could be of great pharmacological interest. Another important aspect of binding similarity is the possibility of exploit it for repositioning of drugs on targets of the same family. In this study, we propose our approach called Kinase drUgs mAchine Learning frAmework (KUALA) to automatically identify kinase active ligands by using specific sets of molecular descriptors and provide a multi-target priority score and a repurposing threshold to suggest the best repurposable and non-repurposable molecules. The comprehensive list of all kinase-ligand pairs and their scores can be found at https://github.com/molinfrimed/multi-kinases .
蛋白激酶家族包含了 500 多个基因,涉及多种功能。因此,它们的生理功能障碍为癌症、心血管和炎症疾病的药物发现铺平了道路。事实上,激酶结合位点的高度相似性具有双重作用。一方面,它是选择性的关键问题,另一方面,根据多药理学,对一个以上靶点的协同控制作用可能具有重要的药理学意义。结合相似性的另一个重要方面是,有可能利用它将药物重新定位到同一家族的靶点上。在这项研究中,我们提出了一种称为激酶药物机器学习框架(KUALA)的方法,该方法通过使用特定的分子描述符集自动识别激酶活性配体,并提供多靶点优先级评分和重新定位阈值,以建议最佳的可重新定位和不可重新定位的分子。所有激酶-配体对及其评分的综合列表可在 https://github.com/molinfrimed/multi-kinases 上找到。