Department of Chemistry, Korea University, Seoul 02841, Korea.
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
Acc Chem Res. 2022 Nov 15;55(22):3253-3264. doi: 10.1021/acs.accounts.2c00531. Epub 2022 Nov 2.
The advent of photochemical techniques has revolutionized the landscape of biology and medical sciences. Especially appealing in this context is photodynamic therapy (PDT), which is a photon-initiated treatment modality that uses cytotoxic reactive oxygen species (ROS) to kill malignant cells. In the past decade, PDT has risen to the forefront of cancer therapy. Its optical control enables noninvasive and spatiotemporal manipulation of the treatment process, and its photoactive nature allows unique patterns to avoid drug resistance to conventional chemotherapeutics. However, despite the impressive advances in this field, achieving widespread clinical adoption of PDT remains difficult. A major concern is that in the hostile tumor microenvironment, tumor cells are hypoxic, which hinders ROS generation during PDT action. To overcome this "Achilles' heel", current strategies focus primarily on the improvement of the intratumoral O perfusion, while clinical trials suggest that O enrichment may promote cancer cell proliferation and metastasis, thereby making FDA approval and clinical transformation of these paradigms challenging.In an effort to improve hypoxia photodynamic therapy (hPDT) in the clinic, we have explored "low to no O-dependent" photochemical approaches over the years to combat hypoxia-induced resistance. In this Account, we present our contributions to this theme during the past 5 years, beginning with low O-dependent approaches (e.g., type I superoxide radical (O) generator, photodynamic O-economizer, mitochondrial respiration inhibition, cellular self-protective pathway modulation, etc.) and progressing to O-independent strategies (e.g., autoadaptive PDT/PTT complementary therapy, O-independent artificial photoredox catalysis in cells). These studies have attracted tremendous attention. Particularly in the pioneering work of 2018, we presented the first demonstration that the O-mediated partial O-recyclability mechanism can overcome PDT resistance ( 2018, 140, 14851-14859). This launched an era of renewed interest in type I PDT, resulting in a plethora of new O photogenerators developed by many groups around the world. Moreover, with the discovery of O-independent photoredox reactions in living cells, artificial photoredox catalysis has emerged as a new field connecting photochemistry and biomedicine, stimulating the development of next-generation phototherapeutic tools ( 2022, 144, 163-173). Our recent work also disclosed that "photoredox catalysis in cells" might be a general mechanism of action of PDT ( 2022, 119, e2210504119). These emergent concepts, molecular designs, photochemical mechanisms, and applications in cancer diagnosis and therapeutics, as well as pros and cons, are discussed in depth in this Account. It is expected that our contributions to date will be of general use to researchers and inspire future efforts to identify more promising hPDT approaches that better meet the clinical needs of cancer therapy.
光化学技术的出现彻底改变了生物学和医学科学的面貌。在这方面,特别吸引人的是光动力疗法(PDT),它是一种由光子引发的治疗方式,利用细胞毒性活性氧(ROS)来杀死恶性细胞。在过去的十年中,PDT 已成为癌症治疗的前沿领域。它的光学控制能够实现治疗过程的非侵入性和时空操纵,其光活性特性允许采用独特的模式来避免对传统化疗药物的耐药性。然而,尽管在这一领域取得了令人印象深刻的进展,但要实现 PDT 的广泛临床应用仍然具有挑战性。一个主要的问题是,在恶劣的肿瘤微环境中,肿瘤细胞处于缺氧状态,这阻碍了 PDT 作用过程中 ROS 的产生。为了克服这一“阿喀琉斯之踵”,目前的策略主要集中在改善肿瘤内的 O 灌注上,而临床试验表明,O 富集可能会促进癌细胞的增殖和转移,从而使这些范式的 FDA 批准和临床转化具有挑战性。为了改善临床中的缺氧光动力疗法(hPDT),我们多年来一直在探索“低氧或无 O 依赖性”的光化学方法来对抗缺氧诱导的耐药性。在本综述中,我们介绍了过去 5 年来在这一主题上的贡献,从低 O 依赖性方法(例如,I 型超氧自由基(O )发生器、光动力 O 节约器、线粒体呼吸抑制、细胞自我保护途径调节等)开始,并逐步发展到 O 独立性策略(例如,自适应 PDT/PTT 互补治疗、细胞内 O 独立人工光氧化还原催化)。这些研究引起了极大的关注。特别是在 2018 年的开创性工作中,我们首次证明了 O 介导的部分 O 再循环机制可以克服 PDT 耐药性( 2018,140,14851-14859)。这开创了 I 型 PDT 重新受到关注的时代,导致全球许多小组开发了大量新的 O 光生成剂。此外,随着活细胞中 O 独立性光氧化还原反应的发现,人工光氧化还原催化作为连接光化学和生物医学的新领域出现,刺激了下一代光治疗工具的发展( 2022,144,163-173)。我们最近的工作还揭示了“细胞内的光氧化还原催化”可能是 PDT 的一种普遍作用机制( 2022,119,e2210504119)。本综述深入讨论了这些新兴概念、分子设计、光化学机制以及它们在癌症诊断和治疗中的应用和优缺点。希望我们目前的贡献能够为研究人员提供普遍的用途,并激发未来努力,以确定更有前途的 hPDT 方法,更好地满足癌症治疗的临床需求。