Suppr超能文献

基于图变换模型的药物-靶标相互作用预测新方法。

A novel method for drug-target interaction prediction based on graph transformers model.

机构信息

College of Computer Science and Engineering, Changchun University of Technology, Changchun, China.

School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.

出版信息

BMC Bioinformatics. 2022 Nov 3;23(1):459. doi: 10.1186/s12859-022-04812-w.

Abstract

BACKGROUND

Drug-target interactions (DTIs) prediction becomes more and more important for accelerating drug research and drug repositioning. Drug-target interaction network is a typical model for DTIs prediction. As many different types of relationships exist between drug and target, drug-target interaction network can be used for modeling drug-target interaction relationship. Recent works on drug-target interaction network are mostly concentrate on drug node or target node and neglecting the relationships between drug-target.

RESULTS

We propose a novel prediction method for modeling the relationship between drug and target independently. Firstly, we use different level relationships of drugs and targets to construct feature of drug-target interaction. Then, we use line graph to model drug-target interaction. After that, we introduce graph transformer network to predict drug-target interaction.

CONCLUSIONS

This method introduces a line graph to model the relationship between drug and target. After transforming drug-target interactions from links to nodes, a graph transformer network is used to accomplish the task of predicting drug-target interactions.

摘要

背景

药物-靶标相互作用(DTIs)预测对于加速药物研究和药物重定位变得越来越重要。药物-靶标相互作用网络是预测 DTIs 的典型模型。由于药物和靶标之间存在许多不同类型的关系,因此可以使用药物-靶标相互作用网络来建模药物-靶标相互作用关系。最近关于药物-靶标相互作用网络的工作主要集中在药物节点或靶标节点上,而忽略了药物-靶标之间的关系。

结果

我们提出了一种新的预测方法,用于独立建模药物和靶标之间的关系。首先,我们使用药物和靶标不同层次的关系来构建药物-靶标相互作用的特征。然后,我们使用线图来建模药物-靶标相互作用。之后,我们引入图变换网络来预测药物-靶标相互作用。

结论

该方法引入了线图来建模药物和靶标之间的关系。通过将药物-靶标相互作用从链接转换为节点,然后使用图变换网络完成预测药物-靶标相互作用的任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ed8/9635108/2ba010835d6a/12859_2022_4812_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验