College of Computer Science and Engineering, Changchun University of Technology, Changchun, China.
School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.
BMC Bioinformatics. 2022 Nov 3;23(1):459. doi: 10.1186/s12859-022-04812-w.
Drug-target interactions (DTIs) prediction becomes more and more important for accelerating drug research and drug repositioning. Drug-target interaction network is a typical model for DTIs prediction. As many different types of relationships exist between drug and target, drug-target interaction network can be used for modeling drug-target interaction relationship. Recent works on drug-target interaction network are mostly concentrate on drug node or target node and neglecting the relationships between drug-target.
We propose a novel prediction method for modeling the relationship between drug and target independently. Firstly, we use different level relationships of drugs and targets to construct feature of drug-target interaction. Then, we use line graph to model drug-target interaction. After that, we introduce graph transformer network to predict drug-target interaction.
This method introduces a line graph to model the relationship between drug and target. After transforming drug-target interactions from links to nodes, a graph transformer network is used to accomplish the task of predicting drug-target interactions.
药物-靶标相互作用(DTIs)预测对于加速药物研究和药物重定位变得越来越重要。药物-靶标相互作用网络是预测 DTIs 的典型模型。由于药物和靶标之间存在许多不同类型的关系,因此可以使用药物-靶标相互作用网络来建模药物-靶标相互作用关系。最近关于药物-靶标相互作用网络的工作主要集中在药物节点或靶标节点上,而忽略了药物-靶标之间的关系。
我们提出了一种新的预测方法,用于独立建模药物和靶标之间的关系。首先,我们使用药物和靶标不同层次的关系来构建药物-靶标相互作用的特征。然后,我们使用线图来建模药物-靶标相互作用。之后,我们引入图变换网络来预测药物-靶标相互作用。
该方法引入了线图来建模药物和靶标之间的关系。通过将药物-靶标相互作用从链接转换为节点,然后使用图变换网络完成预测药物-靶标相互作用的任务。