Suppr超能文献

CoREST 控制内分泌抵抗和乳腺癌可塑性。

Endocrine resistance and breast cancer plasticity are controlled by CoREST.

机构信息

Sylvester Comprehensive Cancer Center, Miami, FL, USA.

Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.

出版信息

Nat Struct Mol Biol. 2022 Nov;29(11):1122-1135. doi: 10.1038/s41594-022-00856-x. Epub 2022 Nov 7.

Abstract

Resistance to cancer treatment remains a major clinical hurdle. Here, we demonstrate that the CoREST complex is a key determinant of endocrine resistance and ER breast cancer plasticity. In endocrine-sensitive cells, CoREST is recruited to regulatory regions co-bound to ERα and FOXA1 to regulate the estrogen pathway. In contrast, during temporal reprogramming towards a resistant state, CoREST is recruited to AP-1 sites. In reprogrammed cells, CoREST favors chromatin opening, cJUN binding to chromatin, and gene activation by controlling SWI/SNF recruitment independently of the demethylase activity of the CoREST subunit LSD1. Genetic and pharmacological CoREST inhibition reduces tumorigenesis and metastasis of endocrine-sensitive and endocrine-resistant xenograft models. Consistently, CoREST controls a gene signature involved in invasiveness in clinical breast tumors resistant to endocrine therapies. Our studies reveal CoREST functions that are co-opted to drive cellular plasticity and resistance to endocrine therapies and tumorigenesis, thus establishing CoREST as a potential therapeutic target for the treatment of advanced breast cancer.

摘要

癌症治疗的耐药性仍然是一个主要的临床难题。在这里,我们证明了 CoREST 复合物是内分泌耐药性和 ER 乳腺癌可塑性的关键决定因素。在内分泌敏感细胞中,CoREST 被招募到与 ERα 和 FOXA1 共同结合的调节区域,以调节雌激素途径。相比之下,在向耐药状态的时间重编程过程中,CoREST 被招募到 AP-1 位点。在重编程的细胞中,CoREST 通过控制 SWI/SNF 的募集来促进染色质开放、cJUN 与染色质的结合以及基因激活,而不依赖于 CoREST 亚基 LSD1 的去甲基化酶活性。遗传和药理学 CoREST 抑制减少了内分泌敏感和内分泌耐药异种移植模型的肿瘤发生和转移。一致地,CoREST 控制了一个涉及临床对内分泌治疗耐药的乳腺癌侵袭性的基因特征。我们的研究揭示了 CoREST 被共同利用的功能,以驱动细胞可塑性和对内分泌治疗的耐药性以及肿瘤发生,从而将 CoREST 确立为治疗晚期乳腺癌的潜在治疗靶点。

相似文献

1
Endocrine resistance and breast cancer plasticity are controlled by CoREST.
Nat Struct Mol Biol. 2022 Nov;29(11):1122-1135. doi: 10.1038/s41594-022-00856-x. Epub 2022 Nov 7.
2
ZNF516 suppresses EGFR by targeting the CtBP/LSD1/CoREST complex to chromatin.
Nat Commun. 2017 Sep 25;8(1):691. doi: 10.1038/s41467-017-00702-5.
3
Crystal Structure of the LSD1/CoREST Histone Demethylase Bound to Its Nucleosome Substrate.
Mol Cell. 2020 Jun 4;78(5):903-914.e4. doi: 10.1016/j.molcel.2020.04.019. Epub 2020 May 11.
4
Mechanism of Crosstalk between the LSD1 Demethylase and HDAC1 Deacetylase in the CoREST Complex.
Cell Rep. 2020 Feb 25;30(8):2699-2711.e8. doi: 10.1016/j.celrep.2020.01.091.
6
Extranucleosomal DNA enhances the activity of the LSD1/CoREST histone demethylase complex.
Nucleic Acids Res. 2015 May 26;43(10):4868-80. doi: 10.1093/nar/gkv388. Epub 2015 Apr 27.
7
The chromatin modifying complex CoREST/LSD1 negatively regulates notch pathway during cerebral cortex development.
Dev Neurobiol. 2016 Dec;76(12):1360-1373. doi: 10.1002/dneu.22397. Epub 2016 May 31.
10
LSD1 engages a corepressor complex for the activation of the estrogen receptor α by estrogen and cAMP.
Nucleic Acids Res. 2016 Oct 14;44(18):8655-8670. doi: 10.1093/nar/gkw522. Epub 2016 Jun 20.

引用本文的文献

1
CoREST in pieces: Dismantling the CoREST complex for cancer therapy and beyond.
Sci Adv. 2025 Jun 6;11(23):eads6556. doi: 10.1126/sciadv.ads6556.
2
The CoREST complex is a therapeutic vulnerability in malignant peripheral nerve sheath tumors.
Sci Rep. 2025 Mar 24;15(1):10128. doi: 10.1038/s41598-025-94517-w.
4
The scaffolding function of LSD1 controls DNA methylation in mouse ESCs.
Nat Commun. 2024 Sep 5;15(1):7758. doi: 10.1038/s41467-024-51966-7.
5
RCOR1 is targeted by miR-23b-3p to modulate growth, colony formation, migration, and invasion of prostate cancer cells.
Int J Clin Exp Pathol. 2024 Feb 15;17(2):29-38. doi: 10.62347/MNSQ2960. eCollection 2024.
6
The CoREST repressor complex mediates phenotype switching and therapy resistance in melanoma.
J Clin Invest. 2024 Feb 1;134(6):e171063. doi: 10.1172/JCI171063.
10
MAF amplification licenses ERα through epigenetic remodelling to drive breast cancer metastasis.
Nat Cell Biol. 2023 Dec;25(12):1833-1847. doi: 10.1038/s41556-023-01281-y. Epub 2023 Nov 9.

本文引用的文献

1
Compressive stress-mediated p38 activation required for ERα + phenotype in breast cancer.
Nat Commun. 2021 Nov 29;12(1):6967. doi: 10.1038/s41467-021-27220-9.
3
Epigenetic mechanisms in breast cancer therapy and resistance.
Nat Commun. 2021 Mar 19;12(1):1786. doi: 10.1038/s41467-021-22024-3.
4
LSD1: more than demethylation of histone lysine residues.
Exp Mol Med. 2020 Dec;52(12):1936-1947. doi: 10.1038/s12276-020-00542-2. Epub 2020 Dec 14.
5
Non-genetic mechanisms of therapeutic resistance in cancer.
Nat Rev Cancer. 2020 Dec;20(12):743-756. doi: 10.1038/s41568-020-00302-4. Epub 2020 Oct 8.
6
Guide for protein fold change and p-value calculation for non-experts in proteomics.
Mol Omics. 2020 Dec 1;16(6):573-582. doi: 10.1039/d0mo00087f. Epub 2020 Sep 24.
7
Chromatin binding of FOXA1 is promoted by LSD1-mediated demethylation in prostate cancer.
Nat Genet. 2020 Oct;52(10):1011-1017. doi: 10.1038/s41588-020-0681-7. Epub 2020 Aug 31.
9
Overcoming Endocrine Resistance in Breast Cancer.
Cancer Cell. 2020 Apr 13;37(4):496-513. doi: 10.1016/j.ccell.2020.03.009.
10
Targeting the scaffolding role of LSD1 (KDM1A) poises acute myeloid leukemia cells for retinoic acid-induced differentiation.
Sci Adv. 2020 Apr 8;6(15):eaax2746. doi: 10.1126/sciadv.aax2746. eCollection 2020 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验