Suppr超能文献

GPU 加速全原子粒子网格 Ewald 连续常数 pH 分子动力学在 Amber 中。

GPU-Accelerated All-Atom Particle-Mesh Ewald Continuous Constant pH Molecular Dynamics in Amber.

机构信息

Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland21201, United States.

Lilly Biotechnology Center, San Diego, California92121, United States.

出版信息

J Chem Theory Comput. 2022 Dec 13;18(12):7510-7527. doi: 10.1021/acs.jctc.2c00586. Epub 2022 Nov 15.

Abstract

Constant pH molecular dynamics (MD) simulations sample protonation states on the fly according to the conformational environment and user specified pH conditions; however, the current accuracy is limited due to the use of implicit-solvent models or a hybrid solvent scheme. Here, we report the first GPU-accelerated implementation, parametrization, and validation of the all-atom continuous constant pH MD (CpHMD) method with particle-mesh Ewald (PME) electrostatics in the Amber22 engine. The titration parameters for Asp, Glu, His, Cys, and Lys were derived for the CHARMM c22 and Amber ff14sb and ff19sb force fields. We then evaluated the PME-CpHMD method using the asynchronous pH replica-exchange titration simulations with the c22 force field for six benchmark proteins, including BBL, hen egg white lysozyme (HEWL), staphylococcal nuclease (SNase), thioredoxin, ribonuclease A (RNaseA), and human muscle creatine kinase (HMCK). The root-mean-square deviation from the experimental p's of Asp, Glu, His, and Cys is 0.76 pH units, and the Pearson's correlation coefficient for the p shifts with respect to model values is 0.80. We demonstrated that a finite-size correction or much enlarged simulation box size can remove a systematic error of the calculated p's and improve agreement with experiment. Importantly, the simulations captured the relevant biology in several challenging cases, e.g., the titration order of the catalytic dyad Glu35/Asp52 in HEWL and the coupled residues Asp19/Asp21 in SNase, the large p upshift of the deeply buried catalytic Asp26 in thioredoxin, and the large p downshift of the deeply buried catalytic Cys283 in HMCK. We anticipate that PME-CpHMD will offer proper pH control to improve the accuracies of MD simulations and enable mechanistic studies of proton-coupled dynamical processes that are ubiquitous in biology but remain poorly understood due to the lack of experimental tools and limitation of current MD simulations.

摘要

恒 pH 分子动力学 (MD) 模拟根据构象环境和用户指定的 pH 条件实时采样质子化状态;然而,由于使用隐式溶剂模型或混合溶剂方案,目前的准确性受到限制。在这里,我们报告了第一个在 Amber22 引擎中使用 GPU 加速实现、参数化和验证全原子连续恒 pH MD (CpHMD) 方法与粒子网格 Ewald (PME) 静电的方法。针对 CHARMM c22 和 Amber ff14sb 和 ff19sb 力场,我们推导了 Asp、Glu、His、Cys 和 Lys 的滴定参数。然后,我们使用带有 c22 力场的异步 pH 复制交换滴定模拟对六个基准蛋白(包括 BBL、鸡卵清溶菌酶 (HEWL)、金黄色葡萄球菌核酸酶 (SNase)、硫氧还蛋白、核糖核酸酶 A (RNaseA) 和人肌肉肌酸激酶 (HMCK))进行了 PME-CpHMD 方法的评估。Asp、Glu、His 和 Cys 的实验 p 值的均方根偏差为 0.76 pH 单位,模型值的 p 偏移的 Pearson 相关系数为 0.80。我们证明,有限尺寸修正或更大的模拟盒尺寸可以消除计算 p 值的系统误差,并提高与实验的一致性。重要的是,模拟在几个具有挑战性的情况下捕捉到了相关的生物学,例如,HEWL 中催化二联体 Glu35/Asp52 的滴定顺序和 SNase 中 Asp19/Asp21 的偶联残基、硫氧还蛋白中深埋的催化 Asp26 的大 p 上移以及 HMCK 中深埋的催化 Cys283 的大 p 下移。我们预计 PME-CpHMD 将提供适当的 pH 控制,以提高 MD 模拟的准确性,并能够对质子偶联动力学过程进行机制研究,这些过程在生物学中普遍存在,但由于缺乏实验工具和当前 MD 模拟的限制,这些过程仍未得到很好的理解。

相似文献

1
GPU-Accelerated All-Atom Particle-Mesh Ewald Continuous Constant pH Molecular Dynamics in Amber.
J Chem Theory Comput. 2022 Dec 13;18(12):7510-7527. doi: 10.1021/acs.jctc.2c00586. Epub 2022 Nov 15.
2
GPU-Accelerated Implementation of Continuous Constant pH Molecular Dynamics in Amber: p Predictions with Single-pH Simulations.
J Chem Inf Model. 2019 Nov 25;59(11):4821-4832. doi: 10.1021/acs.jcim.9b00754. Epub 2019 Nov 14.
3
All-Atom Continuous Constant pH Molecular Dynamics With Particle Mesh Ewald and Titratable Water.
J Chem Theory Comput. 2016 Nov 8;12(11):5411-5421. doi: 10.1021/acs.jctc.6b00552. Epub 2016 Oct 24.
4
Force Field Limitations of All-Atom Continuous Constant pH Molecular Dynamics.
bioRxiv. 2024 Oct 26:2024.09.03.611076. doi: 10.1101/2024.09.03.611076.
5
Generalized Born Based Continuous Constant pH Molecular Dynamics in Amber: Implementation, Benchmarking and Analysis.
J Chem Inf Model. 2018 Jul 23;58(7):1372-1383. doi: 10.1021/acs.jcim.8b00227. Epub 2018 Jul 11.
6
Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism.
Proteins. 2014 Jul;82(7):1319-31. doi: 10.1002/prot.24499. Epub 2014 Jan 15.
7
Effects of system net charge and electrostatic truncation on all-atom constant pH molecular dynamics.
J Comput Chem. 2014 Oct 15;35(27):1986-96. doi: 10.1002/jcc.23713. Epub 2014 Aug 21.
10
Thermodynamic coupling of protonation and conformational equilibria in proteins: theory and simulation.
Biophys J. 2012 Apr 4;102(7):1590-7. doi: 10.1016/j.bpj.2012.02.021. Epub 2012 Apr 3.

引用本文的文献

1
2
Investigating the Effects of pH and Temperature on the Properties of Lysozyme-Polyacrylic Acid Complexes via Molecular Simulations.
ACS Omega. 2025 Jul 31;10(31):34787-34800. doi: 10.1021/acsomega.5c03767. eCollection 2025 Aug 12.
5
Structure-based rational design of covalent probes.
Commun Chem. 2025 Aug 12;8(1):242. doi: 10.1038/s42004-025-01606-y.
6
The Plasma Membrane may Serve as a Drug Depot to Drive the Extreme Potency of Fentanyl.
bioRxiv. 2025 Jul 26:2025.07.22.666146. doi: 10.1101/2025.07.22.666146.
7
Recent Developments in Amber Biomolecular Simulations.
J Chem Inf Model. 2025 Aug 11;65(15):7835-7843. doi: 10.1021/acs.jcim.5c01063. Epub 2025 Jul 29.
10
Integrating computational insights in gold nanoparticle-mediated drug delivery: enhancing efficacy and precision.
Front Med Technol. 2025 Feb 24;7:1528826. doi: 10.3389/fmedt.2025.1528826. eCollection 2025.

本文引用的文献

1
A Guide to the Continuous Constant pH Molecular Dynamics Methods in Amber and CHARMM [Article v1.0].
Living J Comput Mol Sci. 2022;4(1). doi: 10.33011/livecoms.4.1.1563. Epub 2022 Aug 22.
2
Constant pH molecular dynamics simulations: Current status and recent applications.
Curr Opin Struct Biol. 2022 Dec;77:102498. doi: 10.1016/j.sbi.2022.102498. Epub 2022 Nov 18.
3
Fast Polarizable Water Model for Atomistic Simulations.
J Chem Theory Comput. 2022 Oct 11;18(10):6324-6333. doi: 10.1021/acs.jctc.2c00378. Epub 2022 Oct 3.
4
Galvani Offset Potential and Constant-pH Simulations of Membrane Proteins.
J Phys Chem B. 2022 Sep 15;126(36):6868-6877. doi: 10.1021/acs.jpcb.2c04593. Epub 2022 Sep 1.
5
Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems.
J Comput Chem. 1999 Jun;20(8):786-798. doi: 10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B.
6
Profiling MAP kinase cysteines for targeted covalent inhibitor design.
RSC Med Chem. 2021 Nov 3;13(1):54-63. doi: 10.1039/d1md00277e. eCollection 2022 Jan 27.
7
Kinetics and Mechanism of Fentanyl Dissociation from the μ-Opioid Receptor.
JACS Au. 2021 Nov 5;1(12):2208-2215. doi: 10.1021/jacsau.1c00341. eCollection 2021 Dec 27.
8
BLaDE: A Basic Lambda Dynamics Engine for GPU-Accelerated Molecular Dynamics Free Energy Calculations.
J Chem Theory Comput. 2021 Nov 9;17(11):6799-6807. doi: 10.1021/acs.jctc.1c00833. Epub 2021 Oct 28.
9
Reactivities of the Front Pocket N-Terminal Cap Cysteines in Human Kinases.
J Med Chem. 2022 Jan 27;65(2):1525-1535. doi: 10.1021/acs.jmedchem.1c01186. Epub 2021 Oct 14.
10
How μ-opioid receptor recognizes fentanyl.
Nat Commun. 2021 Feb 12;12(1):984. doi: 10.1038/s41467-021-21262-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验