Suppr超能文献

两种金属的故事:用铁和锌对水稻籽粒进行生物强化。

A tale of two metals: Biofortification of rice grains with iron and zinc.

作者信息

Wairich Andriele, Ricachenevsky Felipe K, Lee Sichul

机构信息

Graduate Program in Molecular and Cellular Biology, Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.

Department of Botany, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.

出版信息

Front Plant Sci. 2022 Nov 7;13:944624. doi: 10.3389/fpls.2022.944624. eCollection 2022.

Abstract

Iron (Fe) and zinc (Zn) are essential micronutrients needed by virtually all living organisms, including plants and humans, for proper growth and development. Due to its capacity to easily exchange electrons, Fe is important for electron transport in mitochondria and chloroplasts. Fe is also necessary for chlorophyll synthesis. Zn is a cofactor for several proteins, including Zn-finger transcription factors and redox metabolism enzymes such as copper/Zn superoxide dismutases. In humans, Fe participates in oxygen transport, electron transport, and cell division whereas Zn is involved in nucleic acid metabolism, apoptosis, immunity, and reproduction. Rice ( L.) is one of the major staple food crops, feeding over half of the world's population. However, Fe and Zn concentrations are low in rice grains, especially in the endosperm, which is consumed as white rice. Populations relying heavily on rice and other cereals are prone to Fe and Zn deficiency. One of the most cost-effective solutions to this problem is biofortification, which increases the nutritional value of crops, mainly in their edible organs, without yield reductions. In recent years, several approaches were applied to enhance the accumulation of Fe and Zn in rice seeds, especially in the endosperm. Here, we summarize these attempts involving transgenics and mutant lines, which resulted in Fe and/or Zn biofortification in rice grains. We review rice plant manipulations using ferritin genes, metal transporters, changes in the nicotianamine/phytosiderophore pathway (including biosynthetic genes and transporters), regulators of Fe deficiency responses, and other mutants/overexpressing lines used in gene characterization that resulted in Fe/Zn concentration changes in seeds. This review also discusses research gaps and proposes possible future directions that could be important to increase the concentration and bioavailability of Fe and Zn in rice seeds without the accumulation of deleterious elements. We also emphasize the need for a better understanding of metal homeostasis in rice, the importance of evaluating yield components of plants containing transgenes/mutations under field conditions, and the potential of identifying genes that can be manipulated by gene editing and other nontransgenic approaches.

摘要

铁(Fe)和锌(Zn)是几乎所有生物(包括植物和人类)正常生长发育所需的必需微量营养素。由于铁易于交换电子的能力,它对于线粒体和叶绿体中的电子传递很重要。铁也是叶绿素合成所必需的。锌是几种蛋白质的辅助因子,包括锌指转录因子和氧化还原代谢酶,如铜/锌超氧化物歧化酶。在人类中,铁参与氧气运输、电子传递和细胞分裂,而锌则参与核酸代谢、细胞凋亡、免疫和生殖。水稻(Oryza sativa L.)是主要的主食作物之一,养活了世界一半以上的人口。然而,水稻籽粒中的铁和锌含量较低,尤其是在作为白米食用的胚乳中。严重依赖水稻和其他谷物的人群容易缺铁和锌。解决这个问题最具成本效益的方法之一是生物强化,即在不降低产量的情况下提高作物的营养价值,主要是在其可食用器官中。近年来,人们采用了几种方法来提高水稻种子,特别是胚乳中铁和锌的积累。在这里,我们总结了这些涉及转基因和突变系的尝试,这些尝试导致了水稻籽粒中铁和/或锌的生物强化。我们回顾了利用铁蛋白基因、金属转运蛋白、烟酰胺/植物铁载体途径(包括生物合成基因和转运蛋白)的变化、缺铁反应调节因子以及用于基因表征的其他突变体/过表达系对水稻植株进行的操作,这些操作导致了种子中铁/锌浓度的变化。本综述还讨论了研究空白,并提出了可能的未来方向,这些方向对于在不积累有害元素的情况下提高水稻种子中铁和锌的浓度及生物有效性可能很重要。我们还强调需要更好地了解水稻中的金属稳态,在田间条件下评估含有转基因/突变的植物产量构成因素的重要性,以及识别可通过基因编辑和其他非转基因方法进行操作的基因的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06e2/9677123/8901568fba03/fpls-13-944624-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验