Suppr超能文献

长双歧杆菌高甘露糖型 N-聚糖降解和代谢的机制。

Mechanism of high-mannose N-glycan breakdown and metabolism by Bifidobacterium longum.

机构信息

Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.

Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil.

出版信息

Nat Chem Biol. 2023 Feb;19(2):218-229. doi: 10.1038/s41589-022-01202-4. Epub 2022 Nov 28.

Abstract

Bifidobacteria are early colonizers of the human gut and play central roles in human health and metabolism. To thrive in this competitive niche, these bacteria evolved the capacity to use complex carbohydrates, including mammalian N-glycans. Herein, we elucidated pivotal biochemical steps involved in high-mannose N-glycan utilization by Bifidobacterium longum. After N-glycan release by an endo-β-N-acetylglucosaminidase, the mannosyl arms are trimmed by the cooperative action of three functionally distinct glycoside hydrolase 38 (GH38) α-mannosidases and a specific GH125 α-1,6-mannosidase. High-resolution cryo-electron microscopy structures revealed that bifidobacterial GH38 α-mannosidases form homotetramers, with the N-terminal jelly roll domain contributing to substrate selectivity. Additionally, an α-glucosidase enables the processing of monoglucosylated N-glycans. Notably, the main degradation product, mannose, is isomerized into fructose before phosphorylation, an unconventional metabolic route connecting it to the bifid shunt pathway. These findings shed light on key molecular mechanisms used by bifidobacteria to use high-mannose N-glycans, a perennial carbon and energy source in the intestinal lumen.

摘要

双歧杆菌是人类肠道的早期定植菌,在人类健康和新陈代谢中发挥着核心作用。为了在这个竞争激烈的小生境中茁壮成长,这些细菌进化出了利用复杂碳水化合物的能力,包括哺乳动物 N-糖。在此,我们阐明了长双歧杆菌利用高甘露糖 N-聚糖的关键生化步骤。在endo-β-N-乙酰氨基葡萄糖苷酶释放 N-聚糖后,三个功能不同的糖苷水解酶 38(GH38)α-甘露糖苷酶和特定的 GH125α-1,6-甘露糖苷酶的协同作用下修剪甘露糖臂。高分辨率冷冻电子显微镜结构揭示了双歧杆菌 GH38α-甘露糖苷酶形成同源四聚体,N 端 jelly roll 结构域有助于底物选择性。此外,α-葡萄糖苷酶可使单糖基化 N-聚糖进行加工。值得注意的是,甘露糖是主要的降解产物,在磷酸化之前被异构化为果糖,这是一种将其与双歧分流途径连接的非常规代谢途径。这些发现揭示了双歧杆菌利用高甘露糖 N-聚糖的关键分子机制,高甘露糖 N-聚糖是肠道腔中常年的碳和能量来源。

相似文献

1
Mechanism of high-mannose N-glycan breakdown and metabolism by Bifidobacterium longum.
Nat Chem Biol. 2023 Feb;19(2):218-229. doi: 10.1038/s41589-022-01202-4. Epub 2022 Nov 28.
2
Structure and evolution of the bifidobacterial carbohydrate metabolism proteins and enzymes.
Biochem Soc Trans. 2021 Apr 30;49(2):563-578. doi: 10.1042/BST20200163.
3
Structure and kinetic investigation of Streptococcus pyogenes family GH38 alpha-mannosidase.
PLoS One. 2010 Feb 3;5(2):e9006. doi: 10.1371/journal.pone.0009006.
4
Recent advances in immobilization strategies for glycosidases.
Biotechnol Prog. 2017 Jan;33(1):104-112. doi: 10.1002/btpr.2385. Epub 2016 Oct 31.
7
N-glycan Utilization by Bifidobacterium Gut Symbionts Involves a Specialist β-Mannosidase.
J Mol Biol. 2019 Feb 15;431(4):732-747. doi: 10.1016/j.jmb.2018.12.017. Epub 2019 Jan 11.
9
Structural and functional characterization of a multi-domain GH92 α-1,2-mannosidase from Neobacillus novalis.
Acta Crystallogr D Struct Biol. 2023 May 1;79(Pt 5):387-400. doi: 10.1107/S2059798323001663. Epub 2023 Apr 18.
10
Substrate recognition and catalysis by GH47 α-mannosidases involved in Asn-linked glycan maturation in the mammalian secretory pathway.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):E7890-E7899. doi: 10.1073/pnas.1611213113. Epub 2016 Nov 17.

引用本文的文献

1
can degrade the urinary -glycoprotein Uromodulin.
MicroPubl Biol. 2025 Aug 6;2025. doi: 10.17912/micropub.biology.001724. eCollection 2025.
3
A bayesian approach for parameterizing and predicting plasmid conjugation dynamics.
Sci Rep. 2025 Mar 3;15(1):7396. doi: 10.1038/s41598-024-82799-5.
5
Cross-feeding of bifidobacteria promotes intestinal homeostasis: a lifelong perspective on the host health.
NPJ Biofilms Microbiomes. 2024 Jun 19;10(1):47. doi: 10.1038/s41522-024-00524-6.
6
Genomic factors shape carbon and nitrogen metabolic niche breadth across Saccharomycotina yeasts.
Science. 2024 Apr 26;384(6694):eadj4503. doi: 10.1126/science.adj4503.
7
Genomic and ecological factors shaping specialism and generalism across an entire subphylum.
bioRxiv. 2023 Sep 8:2023.06.19.545611. doi: 10.1101/2023.06.19.545611.
8
Milk glycan metabolism by intestinal bifidobacteria: insights from comparative genomics.
Crit Rev Biochem Mol Biol. 2022 Oct-Dec;57(5-6):562-584. doi: 10.1080/10409238.2023.2182272. Epub 2023 Mar 3.

本文引用的文献

1
cblaster: a remote search tool for rapid identification and visualization of homologous gene clusters.
Bioinform Adv. 2021 Aug 5;1(1):vbab016. doi: 10.1093/bioadv/vbab016. eCollection 2021.
2
Structural basis of the strict specificity of a bacterial GH31 α-1,3-glucosidase for nigerooligosaccharides.
J Biol Chem. 2022 May;298(5):101827. doi: 10.1016/j.jbc.2022.101827. Epub 2022 Mar 12.
3
N-Glycan Degradation Pathways in Gut- and Soil-Dwelling Actinobacteria Share Common Core Genes.
ACS Chem Biol. 2021 Apr 16;16(4):701-711. doi: 10.1021/acschembio.0c00995. Epub 2021 Mar 25.
4
Global view of human protein glycosylation pathways and functions.
Nat Rev Mol Cell Biol. 2020 Dec;21(12):729-749. doi: 10.1038/s41580-020-00294-x. Epub 2020 Oct 21.
5
Cryo-EM structure of fission yeast tetrameric α-mannosidase Ams1.
FEBS Open Bio. 2020 Nov;10(11):2437-2451. doi: 10.1002/2211-5463.12988. Epub 2020 Oct 20.
6
The presence of resistant starch-degrading amylases in Bifidobacterium adolescentis of the human gut.
Int J Biol Macromol. 2020 Oct 15;161:389-397. doi: 10.1016/j.ijbiomac.2020.05.235. Epub 2020 May 30.
8
Enzymatic Adaptation of to Host Glycans, Viewed from Glycoside Hydrolyases and Carbohydrate-Binding Modules.
Microorganisms. 2020 Mar 28;8(4):481. doi: 10.3390/microorganisms8040481.
9
Structural basis of mammalian high-mannose N-glycan processing by human gut Bacteroides.
Nat Commun. 2020 Feb 14;11(1):899. doi: 10.1038/s41467-020-14754-7.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验