Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
Nat Chem Biol. 2023 Feb;19(2):218-229. doi: 10.1038/s41589-022-01202-4. Epub 2022 Nov 28.
Bifidobacteria are early colonizers of the human gut and play central roles in human health and metabolism. To thrive in this competitive niche, these bacteria evolved the capacity to use complex carbohydrates, including mammalian N-glycans. Herein, we elucidated pivotal biochemical steps involved in high-mannose N-glycan utilization by Bifidobacterium longum. After N-glycan release by an endo-β-N-acetylglucosaminidase, the mannosyl arms are trimmed by the cooperative action of three functionally distinct glycoside hydrolase 38 (GH38) α-mannosidases and a specific GH125 α-1,6-mannosidase. High-resolution cryo-electron microscopy structures revealed that bifidobacterial GH38 α-mannosidases form homotetramers, with the N-terminal jelly roll domain contributing to substrate selectivity. Additionally, an α-glucosidase enables the processing of monoglucosylated N-glycans. Notably, the main degradation product, mannose, is isomerized into fructose before phosphorylation, an unconventional metabolic route connecting it to the bifid shunt pathway. These findings shed light on key molecular mechanisms used by bifidobacteria to use high-mannose N-glycans, a perennial carbon and energy source in the intestinal lumen.
双歧杆菌是人类肠道的早期定植菌,在人类健康和新陈代谢中发挥着核心作用。为了在这个竞争激烈的小生境中茁壮成长,这些细菌进化出了利用复杂碳水化合物的能力,包括哺乳动物 N-糖。在此,我们阐明了长双歧杆菌利用高甘露糖 N-聚糖的关键生化步骤。在endo-β-N-乙酰氨基葡萄糖苷酶释放 N-聚糖后,三个功能不同的糖苷水解酶 38(GH38)α-甘露糖苷酶和特定的 GH125α-1,6-甘露糖苷酶的协同作用下修剪甘露糖臂。高分辨率冷冻电子显微镜结构揭示了双歧杆菌 GH38α-甘露糖苷酶形成同源四聚体,N 端 jelly roll 结构域有助于底物选择性。此外,α-葡萄糖苷酶可使单糖基化 N-聚糖进行加工。值得注意的是,甘露糖是主要的降解产物,在磷酸化之前被异构化为果糖,这是一种将其与双歧分流途径连接的非常规代谢途径。这些发现揭示了双歧杆菌利用高甘露糖 N-聚糖的关键分子机制,高甘露糖 N-聚糖是肠道腔中常年的碳和能量来源。