Suppr超能文献

气相色谱数据和二维分子描述符在准确预测全球迁移潜力中的应用。

Application of gas chromatographic data and 2D molecular descriptors for accurate global mobility potential prediction.

作者信息

Studziński Waldemar, Przybyłek Maciej, Gackowska Alicja

机构信息

Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326, Bydgoszcz, Poland.

Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950, Bydgoszcz, Poland.

出版信息

Environ Pollut. 2023 Jan 15;317:120816. doi: 10.1016/j.envpol.2022.120816. Epub 2022 Dec 3.

Abstract

Mobility is a key feature affecting the environmental fate, which is of particular importance in the case of persistent organic pollutants (POPs) and emerging pollutants (EPs). In this study, the global mobility classification artificial neural networks-based models employing GC retention times (RT) and 2D molecular descriptors were constructed and validated. The high usability of RT was confirmed based on the feature selection step performed using the multivariate adaptive regression splines (MARS) tool. Although RT was found to be the most important, according to Kruskal-Wallis ANOVA analysis, it is insufficient to build a robust model, which justifies the need to expand the input layer with 2D descriptors. Therefore the following molecular descriptors: MPC10, WTPT-2, AATS8s, minaaCH, GATS7c, RotBtFrac, ATSC7v and ATSC1p, which were characterized by a high predicting potential were used to improve the classification performance. As a result of machine learning procedure ten of the most accurate neural networks were selected. The external validation showed that the final models are characterized by a high general accuracy score (85.71-96.43%). The high predicting abilities were also confirmed by the micro-averaged Matthews correlation coefficient (MAMCC) (0.73-0.88). To evaluate the applicability of the models, new retention times of selected POPs and EPs including pesticides, polycyclic aromatic hydrocarbons, pharmaceuticals, fragrances and personal care products were measured and used for mobility prediction. Further, the classifiers were used for photodegradation and chlorination products of two popular sunscreen agents, 2-ethyl-hexyl-4-methoxycinnamate and 2-ethylhexyl 4-(dimethylamino)benzoate.

摘要

迁移性是影响环境归宿的一个关键特征,这在持久性有机污染物(POPs)和新兴污染物(EPs)的情况下尤为重要。在本研究中,构建并验证了基于全球迁移性分类人工神经网络的模型,该模型采用气相色谱保留时间(RT)和二维分子描述符。基于使用多元自适应回归样条(MARS)工具执行的特征选择步骤,证实了RT的高可用性。尽管根据Kruskal-Wallis方差分析发现RT是最重要的,但仅靠它不足以构建一个稳健的模型,这证明了用二维描述符扩展输入层的必要性。因此,使用了以下具有高预测潜力的分子描述符:MPC10、WTPT-2、AATS8s、minaaCH、GATS7c、RotBtFrac、ATSC7v和ATSC1p,以提高分类性能。通过机器学习过程,选择了十个最准确的神经网络。外部验证表明,最终模型具有较高的总体准确率得分(85.71-96.43%)。微平均马修斯相关系数(MAMCC)(0.73-0.88)也证实了其高预测能力。为了评估模型的适用性,测量了包括农药、多环芳烃、药物、香料和个人护理产品在内的选定POPs和EPs的新保留时间,并将其用于迁移性预测。此外,分类器还用于两种流行防晒剂2-乙基己基-4-甲氧基肉桂酸酯和2-乙基己基4-(二甲基氨基)苯甲酸酯的光降解和氯化产物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验