Department of Chemical Engineering, Heritage Institute of Technology Kolkata, Kolkata, India.
Biotechnol Genet Eng Rev. 2024 Dec;40(4):3682-3715. doi: 10.1080/02648725.2022.2152631. Epub 2022 Dec 7.
Metabolic engineering principles have long been applied to explore the metabolic networks of complex microbial cell factories under a variety of environmental constraints for effective deployment of the microorganisms in the optimal production of biochemicals like biofuels, polymers, amino acids, recombinant proteins. One of the methodologies used for analyzing microbial metabolic networks is the Flux Balance Analysis (FBA), which employs applications of optimization techniques for forecasting biomass growth and metabolic flux distribution of industrially important products under specified environmental conditions. The flux simulations are instrumental for designing the production-specific microbial cell factories. However, FBA has some inherent limitations. The present review emphasizes how the incorporation of additional kinetic, thermodynamic, expression and regulatory constraints and integration of omics data into the classical FBA platform improve the prediction accuracy of FBA. A programmed comparison of the simulated data with the experimental observations is presented for supporting the claim. The review further accounts for the successful implementation of classical FBA in biotechnological applications and identifies areas in which classical FBA fails to make correct predictions. The analysis of the predictive capabilities of the different FBA strategies presented here is expected to help researchers in finding new avenues in engineering highly efficient microbial metabolic pathways and identify the key metabolic bottlenecks during the process. Based on the appropriate metabolic network design, fermentation engineers will be able to effectively design the bioreactors and optimize large-scale biochemical production through suitable pathway modifications.
代谢工程原理长期以来一直被应用于探索复杂微生物细胞工厂在各种环境约束下的代谢网络,以便有效地将微生物应用于生物燃料、聚合物、氨基酸、重组蛋白等生化产品的最佳生产中。用于分析微生物代谢网络的方法之一是通量平衡分析(FBA),它采用优化技术的应用来预测生物质生长和工业重要产品的代谢通量分布在指定的环境条件下。通量模拟对于设计特定于生产的微生物细胞工厂至关重要。然而,FBA 存在一些固有局限性。本综述强调了如何将额外的动力学、热力学、表达和调控限制以及组学数据纳入经典 FBA 平台,提高 FBA 的预测准确性。为了支持这一说法,提出了对模拟数据与实验观测值的程序比较。该综述进一步说明了经典 FBA 在生物技术应用中的成功实施,并确定了经典 FBA 无法做出正确预测的领域。这里提出的不同 FBA 策略的预测能力分析有望帮助研究人员找到工程高效微生物代谢途径的新途径,并确定该过程中的关键代谢瓶颈。基于适当的代谢网络设计,发酵工程师将能够通过合适的途径修饰有效地设计生物反应器并优化大规模生化生产。