Suppr超能文献

一种与基因调控相关的黏合蛋白运输模式。

A cohesin traffic pattern genetically linked to gene regulation.

机构信息

Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.

Howard Hughes Medical Institute, Chevy Chase, MD, USA.

出版信息

Nat Struct Mol Biol. 2022 Dec;29(12):1239-1251. doi: 10.1038/s41594-022-00890-9. Epub 2022 Dec 8.

Abstract

Cohesin-mediated loop extrusion has been shown to be blocked at specific cis-elements, including CTCF sites, producing patterns of loops and domain boundaries along chromosomes. Here we explore such cis-elements, and their role in gene regulation. We find that transcription termination sites of active genes form cohesin- and RNA polymerase II-dependent domain boundaries that do not accumulate cohesin. At these sites, cohesin is first stalled and then rapidly unloaded. Start sites of transcriptionally active genes form cohesin-bound boundaries, as shown before, but are cohesin-independent. Together with cohesin loading, possibly at enhancers, these sites create a pattern of cohesin traffic that guides enhancer-promoter interactions. Disrupting this traffic pattern, by removing CTCF, renders cells sensitive to knockout of genes involved in transcription initiation, such as the SAGA complexes, and RNA processing such DEAD/H-Box RNA helicases. Without CTCF, these factors are less efficiently recruited to active promoters.

摘要

黏合蛋白介导的环挤出已被证明在特定的顺式元件(包括 CTCF 位点)处被阻断,从而在染色体上产生环和结构域边界的模式。在这里,我们探索了这些顺式元件及其在基因调控中的作用。我们发现,活跃基因的转录终止位点形成依赖于黏合蛋白和 RNA 聚合酶 II 的结构域边界,这些边界不会积累黏合蛋白。在这些位点上,黏合蛋白首先停滞,然后迅速卸载。正如之前所显示的,转录活跃基因的起始位点形成黏合蛋白结合的边界,但与黏合蛋白无关。与黏合蛋白的加载一起(可能在增强子处),这些位点创建了一个黏合蛋白流的模式,指导增强子-启动子相互作用。通过去除 CTCF 破坏这种流模式,会使细胞对参与转录起始(如 SAGA 复合物)和 RNA 加工(如 DEAD/H-Box RNA 解旋酶)的基因的敲除变得敏感。没有 CTCF,这些因子更难以有效地招募到活跃的启动子。

相似文献

1
A cohesin traffic pattern genetically linked to gene regulation.
Nat Struct Mol Biol. 2022 Dec;29(12):1239-1251. doi: 10.1038/s41594-022-00890-9. Epub 2022 Dec 8.
3
Interplay between CTCF boundaries and a super enhancer controls cohesin extrusion trajectories and gene expression.
Mol Cell. 2021 Aug 5;81(15):3082-3095.e6. doi: 10.1016/j.molcel.2021.06.008. Epub 2021 Jun 30.
6
Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl.
Nature. 2017 Apr 27;544(7651):503-507. doi: 10.1038/nature22063. Epub 2017 Apr 19.
8
Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins.
EMBO J. 2017 Dec 15;36(24):3573-3599. doi: 10.15252/embj.201798004. Epub 2017 Dec 7.
9
Tissue-specific CTCF-cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo.
Nat Cell Biol. 2017 Aug;19(8):952-961. doi: 10.1038/ncb3573. Epub 2017 Jul 24.
10
CTCF as a boundary factor for cohesin-mediated loop extrusion: evidence for a multi-step mechanism.
Nucleus. 2020 Dec;11(1):132-148. doi: 10.1080/19491034.2020.1782024.

引用本文的文献

1
LANA-dependent transcription-replication conflicts and R-loops at the terminal repeats (TR) correlate with KSHV episome maintenance.
PLoS Pathog. 2025 Aug 18;21(8):e1013029. doi: 10.1371/journal.ppat.1013029. eCollection 2025 Aug.
3
Histone Acetylation Differentially Modulates CTCF-CTCF Loops and Intra-TAD Interactions.
bioRxiv. 2025 Aug 1:2025.07.29.667515. doi: 10.1101/2025.07.29.667515.
5
Structural variants in the 3D genome as drivers of disease.
Nat Rev Genet. 2025 Jun 30. doi: 10.1038/s41576-025-00862-x.
6
Extrusion fountains are restricted by WAPL-dependent cohesin release and CTCF barriers.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf549.
7
Rules of engagement for condensins and cohesins guide mitotic chromosome formation.
Science. 2025 Apr 11;388(6743):eadq1709. doi: 10.1126/science.adq1709.
9
Liquid condensates: a new barrier to loop extrusion?
Cell Mol Life Sci. 2025 Feb 20;82(1):80. doi: 10.1007/s00018-024-05559-8.
10
Chromosomal domain formation by archaeal SMC, a roadblock protein, and DNA structure.
Nat Commun. 2025 Feb 19;16(1):1312. doi: 10.1038/s41467-025-56197-y.

本文引用的文献

1
The Mediator complex regulates enhancer-promoter interactions.
Nat Struct Mol Biol. 2023 Jul;30(7):991-1000. doi: 10.1038/s41594-023-01027-2. Epub 2023 Jul 10.
2
Transcription shapes 3D chromatin organization by interacting with loop extrusion.
Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2210480120. doi: 10.1073/pnas.2210480120. Epub 2023 Mar 10.
4
Nonlinear control of transcription through enhancer-promoter interactions.
Nature. 2022 Apr;604(7906):571-577. doi: 10.1038/s41586-022-04570-y. Epub 2022 Apr 13.
5
Inference of CRISPR Edits from Sanger Trace Data.
CRISPR J. 2022 Feb;5(1):123-130. doi: 10.1089/crispr.2021.0113. Epub 2022 Feb 2.
6
DEAD-Box RNA Helicases and Genome Stability.
Genes (Basel). 2021 Sep 23;12(10):1471. doi: 10.3390/genes12101471.
7
How subtle changes in 3D structure can create large changes in transcription.
Elife. 2021 Jul 9;10:e64320. doi: 10.7554/eLife.64320.
8
Distinct properties and functions of CTCF revealed by a rapidly inducible degron system.
Cell Rep. 2021 Feb 23;34(8):108783. doi: 10.1016/j.celrep.2021.108783.
9
Promoter-proximal CTCF binding promotes distal enhancer-dependent gene activation.
Nat Struct Mol Biol. 2021 Feb;28(2):152-161. doi: 10.1038/s41594-020-00539-5. Epub 2021 Jan 4.
10
WAPL maintains a cohesin loading cycle to preserve cell-type-specific distal gene regulation.
Nat Genet. 2021 Jan;53(1):100-109. doi: 10.1038/s41588-020-00744-4. Epub 2020 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验