Suppr超能文献

利用合成基因回路对治疗性人类细胞功能进行多维控制。

Multidimensional control of therapeutic human cell function with synthetic gene circuits.

机构信息

Biological Design Center, Boston University, Boston, MA, USA.

Department of Biomedical Engineering, Boston University, Boston, MA, USA.

出版信息

Science. 2022 Dec 16;378(6625):1227-1234. doi: 10.1126/science.ade0156. Epub 2022 Dec 15.

Abstract

Synthetic gene circuits that precisely control human cell function could expand the capabilities of gene- and cell-based therapies. However, platforms for developing circuits in primary human cells that drive robust functional changes in vivo and have compositions suitable for clinical use are lacking. Here, we developed synthetic zinc finger transcription regulators (synZiFTRs), which are compact and based largely on human-derived proteins. As a proof of principle, we engineered gene switches and circuits that allow precise, user-defined control over therapeutically relevant genes in primary T cells using orthogonal, US Food and Drug Administration-approved small-molecule inducers. Our circuits can instruct T cells to sequentially activate multiple cellular programs such as proliferation and antitumor activity to drive synergistic therapeutic responses. This platform should accelerate the development and clinical translation of synthetic gene circuits in diverse human cell types and contexts.

摘要

合成基因电路可以精确控制人体细胞的功能,从而拓展基因和细胞治疗的应用范围。然而,目前缺乏能够在原代人细胞中开发出能够在体内产生强大功能变化且适合临床应用的电路的平台。在这里,我们开发了合成锌指转录调控因子(synZiFTRs),它们结构紧凑,主要基于人类来源的蛋白质。作为原理验证,我们设计了基因开关和电路,这些开关和电路使用正交的、美国食品和药物管理局批准的小分子诱导剂,允许在原代 T 细胞中对治疗相关基因进行精确的、用户定义的控制。我们的电路可以指示 T 细胞依次激活多个细胞程序,如增殖和抗肿瘤活性,以产生协同的治疗反应。这个平台应该加速在不同的人类细胞类型和环境中合成基因电路的开发和临床转化。

相似文献

1
Multidimensional control of therapeutic human cell function with synthetic gene circuits.
Science. 2022 Dec 16;378(6625):1227-1234. doi: 10.1126/science.ade0156. Epub 2022 Dec 15.
2
Enhancing cell-based therapies with synthetic gene circuits responsive to molecular stimuli.
Biotechnol Bioeng. 2024 Oct;121(10):2987-3000. doi: 10.1002/bit.28770. Epub 2024 Jun 12.
3
Multiplexed Gene Expression Tuning with Orthogonal Synthetic Gene Circuits.
ACS Synth Biol. 2020 Apr 17;9(4):930-939. doi: 10.1021/acssynbio.9b00534. Epub 2020 Mar 23.
4
Genetic circuitry for personalized human cell therapy.
Curr Opin Biotechnol. 2019 Oct;59:31-38. doi: 10.1016/j.copbio.2019.02.003. Epub 2019 Mar 7.
5
[Closed-loop synthetic gene circuits for cell-based therapies].
Med Sci (Paris). 2024 May;40(5):437-444. doi: 10.1051/medsci/2024054. Epub 2024 May 31.
6
Gene-circuit therapy on the horizon: synthetic biology tools for engineered therapeutics.
Acta Biochim Pol. 2021 Aug 30;68(3):377-383. doi: 10.18388/abp.2020_5744.
7
Synthetic circuits, devices and modules.
Protein Cell. 2010 Nov;1(11):974-8. doi: 10.1007/s13238-010-0133-8. Epub 2010 Dec 10.
8
Synthetic multistability in mammalian cells.
Science. 2022 Jan 21;375(6578):eabg9765. doi: 10.1126/science.abg9765.
9
Designing cell function: assembly of synthetic gene circuits for cell biology applications.
Nat Rev Mol Cell Biol. 2018 Aug;19(8):507-525. doi: 10.1038/s41580-018-0024-z.
10
Programming gene and engineered-cell therapies with synthetic biology.
Science. 2018 Feb 9;359(6376). doi: 10.1126/science.aad1067.

引用本文的文献

2
Transitioning from native to synthetic receptors: broadening T-cell engineering and beyond.
Cell Mol Immunol. 2025 Jun 6. doi: 10.1038/s41423-025-01304-8.
3
Machine-guided dual-objective protein engineering for deimmunization and therapeutic functions.
Cell Syst. 2025 Jul 16;16(7):101299. doi: 10.1016/j.cels.2025.101299. Epub 2025 Jun 3.
4
Expanding the σ54-dependent transcription process with orthogonal designs.
Nucleic Acids Res. 2025 May 22;53(10). doi: 10.1093/nar/gkaf442.
5
Quantum-inspired logic for advanced Transcriptional Programming.
Nucleic Acids Res. 2025 May 10;53(9). doi: 10.1093/nar/gkaf440.
7
Protease-Containing Nanobodies for Detecting and Manipulating Intracellular Antigens Using Antiviral Drugs.
ACS Chem Biol. 2025 Jun 20;20(6):1145-1152. doi: 10.1021/acschembio.5c00176. Epub 2025 May 12.
9
On-demand treatment of metabolic diseases by a synthetic drug-inducible exocytosis system.
Nat Commun. 2025 Mar 22;16(1):2838. doi: 10.1038/s41467-025-58184-9.
10

本文引用的文献

2
Modular design of synthetic receptors for programmed gene regulation in cell therapies.
Cell. 2022 Apr 14;185(8):1431-1443.e16. doi: 10.1016/j.cell.2022.03.023.
3
Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing.
Mol Cell. 2021 Oct 21;81(20):4333-4345.e4. doi: 10.1016/j.molcel.2021.08.008. Epub 2021 Sep 3.
7
TGF-β suppresses type 2 immunity to cancer.
Nature. 2020 Nov;587(7832):115-120. doi: 10.1038/s41586-020-2836-1. Epub 2020 Oct 21.
8
Engineering CAR-T Cells for Next-Generation Cancer Therapy.
Cancer Cell. 2020 Oct 12;38(4):473-488. doi: 10.1016/j.ccell.2020.07.005. Epub 2020 Jul 30.
9
CRISPR-CasΦ from huge phages is a hypercompact genome editor.
Science. 2020 Jul 17;369(6501):333-337. doi: 10.1126/science.abb1400.
10
All systems go: converging synthetic biology and combinatorial treatment for CAR-T cell therapy.
Curr Opin Biotechnol. 2020 Oct;65:75-87. doi: 10.1016/j.copbio.2020.01.009. Epub 2020 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验