Biological Design Center, Boston University, Boston, MA, USA.
Department of Biomedical Engineering, Boston University, Boston, MA, USA.
Science. 2022 Dec 16;378(6625):1227-1234. doi: 10.1126/science.ade0156. Epub 2022 Dec 15.
Synthetic gene circuits that precisely control human cell function could expand the capabilities of gene- and cell-based therapies. However, platforms for developing circuits in primary human cells that drive robust functional changes in vivo and have compositions suitable for clinical use are lacking. Here, we developed synthetic zinc finger transcription regulators (synZiFTRs), which are compact and based largely on human-derived proteins. As a proof of principle, we engineered gene switches and circuits that allow precise, user-defined control over therapeutically relevant genes in primary T cells using orthogonal, US Food and Drug Administration-approved small-molecule inducers. Our circuits can instruct T cells to sequentially activate multiple cellular programs such as proliferation and antitumor activity to drive synergistic therapeutic responses. This platform should accelerate the development and clinical translation of synthetic gene circuits in diverse human cell types and contexts.
合成基因电路可以精确控制人体细胞的功能,从而拓展基因和细胞治疗的应用范围。然而,目前缺乏能够在原代人细胞中开发出能够在体内产生强大功能变化且适合临床应用的电路的平台。在这里,我们开发了合成锌指转录调控因子(synZiFTRs),它们结构紧凑,主要基于人类来源的蛋白质。作为原理验证,我们设计了基因开关和电路,这些开关和电路使用正交的、美国食品和药物管理局批准的小分子诱导剂,允许在原代 T 细胞中对治疗相关基因进行精确的、用户定义的控制。我们的电路可以指示 T 细胞依次激活多个细胞程序,如增殖和抗肿瘤活性,以产生协同的治疗反应。这个平台应该加速在不同的人类细胞类型和环境中合成基因电路的开发和临床转化。