Suppr超能文献

利用保角预测进行内分泌干扰物预测 - 一种具有置信度识别有害化学物质的优先级策略。

Predicting Endocrine Disruption Using Conformal Prediction - A Prioritization Strategy to Identify Hazardous Chemicals with Confidence.

机构信息

Chemistry Department, Umeå University, 901 87 Umeå, Sweden.

Department of Computer and Systems Sciences, Stockholm University, Box 7003, 164 07 Kista, Sweden.

出版信息

Chem Res Toxicol. 2023 Jan 16;36(1):53-65. doi: 10.1021/acs.chemrestox.2c00267. Epub 2022 Dec 19.

Abstract

Receptor-mediated molecular initiating events (MIEs) and their relevance in endocrine activity (EA) have been highlighted in literature. More than 15 receptors have been associated with neurodevelopmental adversity and metabolic disruption. MIEs describe chemical interactions with defined biological outcomes, a relationship that could be described with quantitative structure-activity relationship (QSAR) models. QSAR uncertainty can be assessed using the conformal prediction (CP) framework, which provides similarity (i.e., nonconformity) scores relative to the defined classes per prediction. CP calibration can indirectly mitigate data imbalance during model development, and the nonconformity scores serve as intrinsic measures of chemical applicability domain assessment during screening. The focus of this work was to propose an predictive strategy for EA. First, 23 QSAR models for MIEs associated with EA were developed using high-throughput data for 14 receptors. To handle the data imbalance, five protocols were compared, and CP provided the most balanced class definition. Second, the developed QSAR models were applied to a large data set (∼55,000 chemicals), comprising chemicals representative of potential risk for human exposure. Using CP, it was possible to assess the uncertainty of the screening results and identify model strengths and out of domain chemicals. Last, two clustering methods, t-distributed stochastic neighbor embedding and Tanimoto similarity, were used to identify compounds with potential EA using known endocrine disruptors as reference. The cluster overlap between methods produced 23 chemicals with suspected or demonstrated EA potential. The presented models could be utilized for first-tier screening and identification of compounds with potential biological activity across the studied MIEs.

摘要

文献中强调了受体介导的分子起始事件(MIEs)及其与内分泌活性(EA)的相关性。已经有超过 15 种受体与神经发育逆境和代谢紊乱有关。MIEs 描述了与特定生物结果的化学相互作用,可以使用定量构效关系(QSAR)模型来描述这种关系。QSAR 不确定性可以使用共形预测(CP)框架进行评估,该框架根据每个预测相对于定义的类别提供相似性(即不一致性)分数。CP 校准可以在模型开发过程中间接减轻数据不平衡的影响,并且不一致性分数在筛选过程中作为化学适用性域评估的内在度量。这项工作的重点是提出一种用于 EA 的预测策略。首先,使用 14 种受体的高通量数据为与 EA 相关的 MIEs 开发了 23 个 QSAR 模型。为了处理数据不平衡,比较了五个协议,CP 提供了最平衡的类别定义。其次,将开发的 QSAR 模型应用于一个大型数据集(约 55,000 种化学物质),该数据集包含了代表人类暴露潜在风险的化学物质。使用 CP,可以评估筛选结果的不确定性,并识别模型的优势和超出域的化学物质。最后,使用 t 分布随机邻域嵌入和 Tanimoto 相似性两种聚类方法,使用已知的内分泌干扰物作为参考,识别具有潜在 EA 的化合物。方法之间的聚类重叠产生了 23 种具有可疑或已证明的 EA 潜力的化学物质。所提出的模型可用于一级筛选和识别具有潜在生物学活性的化合物,这些化合物涉及所研究的 MIEs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abca/9846826/0b6ee1deb79c/tx2c00267_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验