Suppr超能文献

基于人群的病例-对照研究:开发和验证用于预测日本女性乳腺癌发病风险的全基因组多基因风险评分。

Development and validation of genome-wide polygenic risk scores for predicting breast cancer incidence in Japanese females: a population-based case-cohort study.

机构信息

Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.

Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan.

出版信息

Breast Cancer Res Treat. 2023 Feb;197(3):661-671. doi: 10.1007/s10549-022-06843-6. Epub 2022 Dec 20.

Abstract

PURPOSE

This study aimed to develop an ancestry-specific polygenic risk scores (PRSs) for the prediction of breast cancer events in Japanese females and validate it in a longitudinal cohort study.

METHODS

Using publicly available summary statistics of female breast cancer genome-wide association study (GWAS) of Japanese and European ancestries, we, respectively, developed 31 candidate genome-wide PRSs using pruning and thresholding (P + T) and LDpred methods with varying parameters. Among the candidate PRS models, the best model was selected using a case-cohort dataset (63 breast cancer cases and 2213 sub-cohorts of Japanese females during a median follow-up of 11.9 years) according to the maximal predictive ability by Harrell's C-statistics. The best-performing PRS for each derivation GWAS was evaluated in another independent case-cohort dataset (260 breast cancer cases and 7845 sub-cohorts of Japanese females during a median follow-up of 16.9 years).

RESULTS

For the best PRS model involving 46,861 single nucleotide polymorphisms (SNPs; P + T method with P = 0.05 and R = 0.2) derived from Japanese-ancestry GWAS, the Harrell's C-statistic was 0.598 ± 0.018 in the evaluation dataset. The age-adjusted hazard ratio for breast cancer in females with the highest PRS quintile compared with those in the lowest PRS quintile was 2.47 (95% confidence intervals, 1.64-3.70). The PRS constructed using Japanese-ancestry GWAS demonstrated better predictive performance for breast cancer in Japanese females than that using European-ancestry GWAS (Harrell's C-statistics 0.598 versus 0.586).

CONCLUSION

This study developed a breast cancer PRS for Japanese females and demonstrated the usefulness of the PRS for breast cancer risk stratification.

摘要

目的

本研究旨在开发针对日本女性乳腺癌事件预测的基于祖源的多基因风险评分(PRS),并在纵向队列研究中对其进行验证。

方法

利用公开的日本和欧洲裔女性乳腺癌全基因组关联研究(GWAS)的汇总统计数据,我们分别使用修剪和阈值(P+T)和 LDpred 方法,使用不同的参数,开发了 31 个候选全基因组 PRS。在候选 PRS 模型中,根据 Harrell 的 C 统计量的最大预测能力,使用病例-队列数据集(63 例乳腺癌病例和 2213 例日本女性亚队列,中位随访时间为 11.9 年)选择最佳模型。根据每个推导 GWAS 的最佳 PRS,在另一个独立的病例-队列数据集(260 例乳腺癌病例和 7845 例日本女性亚队列,中位随访时间为 16.9 年)中对其进行评估。

结果

对于基于日本裔 GWAS 开发的涉及 46861 个单核苷酸多态性(SNP;P+T 方法,P=0.05,R=0.2)的最佳 PRS 模型,在评估数据集的 Harrell 的 C 统计量为 0.598±0.018。最高 PRS 五分位数的女性患乳腺癌的年龄调整危险比与最低 PRS 五分位数的女性相比为 2.47(95%置信区间,1.64-3.70)。使用日本裔 GWAS 构建的 PRS 对日本女性乳腺癌的预测性能优于使用欧洲裔 GWAS(Harrell 的 C 统计量 0.598 与 0.586)。

结论

本研究为日本女性开发了乳腺癌 PRS,并证明了 PRS 对乳腺癌风险分层的有用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验