Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
Trends Genet. 2023 Feb;39(2):140-153. doi: 10.1016/j.tig.2022.11.003. Epub 2022 Dec 20.
Regulation of gene expression is a complex but highly guided process. While genomic technologies and computational approaches have allowed high-throughput mapping of cis-regulatory elements (CREs) and their interactions in 3D, their precise role in regulating gene expression remains obscure. Recent complementary observations revealed that interactions between CREs frequently result in the formation of small-scale functional modules within topologically associating domains. Such chromatin modules likely emerge from a complex interplay between regulatory machineries assembled at CREs, including site-specific binding of transcription factors. Here, we review the methods that allow identifying chromatin modules, summarize possible mechanisms that steer CRE interactions within these modules, and discuss outstanding challenges to uncover how chromatin modules fit in our current understanding of the functional 3D genome.
基因表达的调控是一个复杂但高度导向的过程。虽然基因组技术和计算方法已经允许对顺式调控元件(CREs)及其在 3D 中的相互作用进行高通量映射,但它们在调节基因表达中的精确作用仍然不清楚。最近的互补观察结果表明,CRE 之间的相互作用经常导致拓扑关联域内小尺度功能模块的形成。这种染色质模块可能是由在 CRE 处组装的调控机制之间的复杂相互作用产生的,包括转录因子的特异性结合。在这里,我们回顾了识别染色质模块的方法,总结了指导这些模块内 CRE 相互作用的可能机制,并讨论了揭示染色质模块如何适应我们对功能 3D 基因组的现有理解所面临的挑战。