Suppr超能文献

抗结核药物的药代动力学和药效学:方法学与人体研究评估

Pharmacokinetics and pharmacodynamics of anti-tuberculosis drugs: An evaluation of , methodologies and human studies.

作者信息

Alffenaar Jan-Willem C, de Steenwinkel Jurriaan E M, Diacon Andreas H, Simonsson Ulrika S H, Srivastava Shashikant, Wicha Sebastian G

机构信息

Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia.

School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia.

出版信息

Front Pharmacol. 2022 Dec 9;13:1063453. doi: 10.3389/fphar.2022.1063453. eCollection 2022.

Abstract

There has been an increased interest in pharmacokinetics and pharmacodynamics (PKPD) of anti-tuberculosis drugs. A better understanding of the relationship between drug exposure, antimicrobial kill and acquired drug resistance is essential not only to optimize current treatment regimens but also to design appropriately dosed regimens with new anti-tuberculosis drugs. Although the interest in PKPD has resulted in an increased number of studies, the actual bench-to-bedside translation is somewhat limited. One of the reasons could be differences in methodologies and outcome assessments that makes it difficult to compare the studies. In this paper we summarize most relevant , , and human PKPD studies performed to optimize the drug dose and regimens for treatment of tuberculosis. The assessment focuses on MIC determination, static time-kill kinetics, and dynamic hollow fibre infection models to investigate acquisition of resistance and killing of Mycobacterium tuberculosis populations in various metabolic states. The assessment focuses on the various animal models, routes of infection, PK at the site of infection, PD read-outs, biomarkers and differences in treatment outcome evaluation (relapse and death). For human PKPD we focus on early bactericidal activity studies and inclusion of PK and therapeutic drug monitoring in clinical trials. Modelling and simulation approaches that are used to evaluate and link the different data types will be discussed. We also describe the concept of different studies, study design, importance of uniform reporting including microbiological and clinical outcome assessments, and modelling approaches. We aim to encourage researchers to consider methods of assessing and reporting PKPD of anti-tuberculosis drugs when designing studies. This will improve appropriate comparison between studies and accelerate the progress in the field.

摘要

人们对抗结核药物的药代动力学和药效学(PKPD)的兴趣日益浓厚。更好地理解药物暴露、抗菌杀灭作用和获得性耐药之间的关系,不仅对于优化当前的治疗方案至关重要,而且对于设计新的抗结核药物的合适剂量方案也至关重要。尽管对PKPD的兴趣导致了研究数量的增加,但实际从实验室到临床的转化仍较为有限。原因之一可能是方法学和结果评估的差异,这使得研究之间难以进行比较。在本文中,我们总结了为优化治疗结核病的药物剂量和方案而进行的最相关的体外、体内外和人体PKPD研究。体外评估侧重于最低抑菌浓度(MIC)测定、静态时间杀菌动力学以及动态中空纤维感染模型,以研究不同代谢状态下结核分枝杆菌群体的耐药性获得和杀灭情况。体内外评估侧重于各种动物模型、感染途径、感染部位的药代动力学、药效学读数、生物标志物以及治疗结果评估(复发和死亡)的差异。对于人体PKPD,我们侧重于早期杀菌活性研究以及在临床试验中纳入药代动力学和治疗药物监测。将讨论用于评估和关联不同数据类型的建模和模拟方法。我们还描述了不同研究的概念、研究设计、包括微生物学和临床结果评估在内的统一报告的重要性以及建模方法。我们旨在鼓励研究人员在设计研究时考虑评估和报告抗结核药物PKPD的方法。这将改善研究之间的适当比较,并加速该领域的进展。

相似文献

1
Pharmacokinetics and pharmacodynamics of anti-tuberculosis drugs: An evaluation of , methodologies and human studies.
Front Pharmacol. 2022 Dec 9;13:1063453. doi: 10.3389/fphar.2022.1063453. eCollection 2022.
3
Pharmacokinetic/pharmacodynamic models for time courses of antibiotic effects.
Int J Antimicrob Agents. 2022 Sep;60(3):106616. doi: 10.1016/j.ijantimicag.2022.106616. Epub 2022 Jun 9.
4
Antibiotic pharmacokinetic/pharmacodynamic modelling: MIC, pharmacodynamic indices and beyond.
Int J Antimicrob Agents. 2021 Aug;58(2):106368. doi: 10.1016/j.ijantimicag.2021.106368. Epub 2021 May 28.
5
A pharmacokinetic-pharmacodynamic (PKPD) model based on in vitro time-kill data predicts the in vivo PK/PD index of colistin.
J Antimicrob Chemother. 2016 Jul;71(7):1881-4. doi: 10.1093/jac/dkw057. Epub 2016 Mar 16.
7
A simple in vitro PK/PD model system to determine time-kill curves of drugs against Mycobacteria.
Tuberculosis (Edinb). 2009 Sep;89(5):378-85. doi: 10.1016/j.tube.2009.08.002. Epub 2009 Sep 11.
9
Pharmacokinetics and pharmacodynamics in the development of anti-tuberculosis drugs.
Tuberculosis (Edinb). 2008 Aug;88 Suppl 1:S65-74. doi: 10.1016/S1472-9792(08)70037-4.
10
Dose optimization of moxifloxacin and linezolid against tuberculosis using mathematical modeling and simulation.
Int J Antimicrob Agents. 2019 Mar;53(3):275-283. doi: 10.1016/j.ijantimicag.2018.10.012. Epub 2018 Oct 29.

引用本文的文献

1
High Prevalence of atpE Mutations in Bedaquiline-Resistant Mycobacterium tuberculosis Isolates, Russia.
Emerg Infect Dis. 2025 Mar;31(3):525-536. doi: 10.3201/eid3103.241488.
2
stormTB: a web-based simulator of a murine minimal-PBPK model for anti-tuberculosis treatments.
Front Pharmacol. 2025 Jan 8;15:1462193. doi: 10.3389/fphar.2024.1462193. eCollection 2024.
3
Toward better cures for lung disease.
Clin Microbiol Rev. 2024 Dec 10;37(4):e0008023. doi: 10.1128/cmr.00080-23. Epub 2024 Oct 3.
4
Pharmacokinetic-pharmacodynamic modeling of tuberculosis time to positivity and colony-forming unit to assess the response to dose-ranging linezolid.
Antimicrob Agents Chemother. 2024 Aug 7;68(8):e0019024. doi: 10.1128/aac.00190-24. Epub 2024 Jul 17.
5
New Oxazolidinones for Tuberculosis: Are Novel Treatments on the Horizon?
Pharmaceutics. 2024 Jun 17;16(6):818. doi: 10.3390/pharmaceutics16060818.
6
Therapeutic Drug Monitoring and Biomarkers; towards Better Dosing of Antimicrobial Therapy.
Pharmaceutics. 2024 May 17;16(5):677. doi: 10.3390/pharmaceutics16050677.
7
Updated antimicrobial dosing recommendations for obese patients.
Antimicrob Agents Chemother. 2024 May 2;68(5):e0171923. doi: 10.1128/aac.01719-23. Epub 2024 Mar 25.
9
Standards for clinical trials for treating TB.
Int J Tuberc Lung Dis. 2023 Dec 1;27(12):885-898. doi: 10.5588/ijtld.23.0341.
10
Standards for model-based early bactericidal activity analysis and sample size determination in tuberculosis drug development.
Front Pharmacol. 2023 Apr 13;14:1150243. doi: 10.3389/fphar.2023.1150243. eCollection 2023.

本文引用的文献

1
Pharmacometrics in tuberculosis: progress and opportunities.
Int J Antimicrob Agents. 2022 Sep;60(3):106620. doi: 10.1016/j.ijantimicag.2022.106620. Epub 2022 Jun 17.
2
Clinical standards for the dosing and management of TB drugs.
Int J Tuberc Lung Dis. 2022 Jun 1;26(6):483-499. doi: 10.5588/ijtld.22.0188.
3
Anti-tuberculosis treatment strategies and drug development: challenges and priorities.
Nat Rev Microbiol. 2022 Nov;20(11):685-701. doi: 10.1038/s41579-022-00731-y. Epub 2022 Apr 27.
4
Pre-Clinical Tools for Predicting Drug Efficacy in Treatment of Tuberculosis.
Microorganisms. 2022 Feb 26;10(3):514. doi: 10.3390/microorganisms10030514.
5
Tuberculosis Treatment Monitoring and Outcome Measures: New Interest and New Strategies.
Clin Microbiol Rev. 2022 Sep 21;35(3):e0022721. doi: 10.1128/cmr.00227-21. Epub 2022 Mar 21.
7
Evaluating the effect of clofazimine against Mycobacterium tuberculosis given alone or in combination with pretomanid, bedaquiline or linezolid.
Int J Antimicrob Agents. 2022 Feb;59(2):106509. doi: 10.1016/j.ijantimicag.2021.106509. Epub 2021 Dec 25.
8
Mass spectrometry for therapeutic drug monitoring of anti-tuberculosis drugs.
Clin Mass Spectrom. 2018 Oct 19;14 Pt A:34-45. doi: 10.1016/j.clinms.2018.10.002. eCollection 2019 Sep.
9
Repurposing Cefazolin-Avibactam for the Treatment of Drug Resistant .
Front Pharmacol. 2021 Oct 22;12:776969. doi: 10.3389/fphar.2021.776969. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验