Suppr超能文献

全基因组推断表明,反馈调控限制了依赖启动子的转录爆发动力学。

Genome-wide inference reveals that feedback regulations constrain promoter-dependent transcriptional burst kinetics.

机构信息

Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou, 510275, P. R. China.

School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province, 510275, P. R. China.

出版信息

Nucleic Acids Res. 2023 Jan 11;51(1):68-83. doi: 10.1093/nar/gkac1204.

Abstract

Gene expression in mammalian cells is highly variable and episodic, resulting in a series of discontinuous bursts of mRNAs. A challenge is to understand how static promoter architecture and dynamic feedback regulations dictate bursting on a genome-wide scale. Although single-cell RNA sequencing (scRNA-seq) provides an opportunity to address this challenge, effective analytical methods are scarce. We developed an interpretable and scalable inference framework, which combined experimental data with a mechanistic model to infer transcriptional burst kinetics (sizes and frequencies) and feedback regulations. Applying this framework to scRNA-seq data generated from embryonic mouse fibroblast cells, we found Simpson's paradoxes, i.e. genome-wide burst kinetics exhibit different characteristics in two cases without and with distinguishing feedback regulations. We also showed that feedbacks differently modulate burst frequencies and sizes and conceal the effects of transcription start site distributions on burst kinetics. Notably, only in the presence of positive feedback, TATA genes are expressed with high burst frequencies and enhancer-promoter interactions mainly modulate burst frequencies. The developed inference method provided a flexible and efficient way to investigate transcriptional burst kinetics and the obtained results would be helpful for understanding cell development and fate decision.

摘要

哺乳动物细胞中的基因表达高度可变且具有间歇性,导致一系列不连续的 mRNA 爆发。一个挑战是了解静态启动子结构和动态反馈调节如何在全基因组范围内控制爆发。尽管单细胞 RNA 测序 (scRNA-seq) 提供了应对这一挑战的机会,但有效的分析方法却很少。我们开发了一种可解释和可扩展的推理框架,该框架将实验数据与机械模型相结合,以推断转录爆发动力学(大小和频率)和反馈调节。将该框架应用于从胚胎鼠成纤维细胞产生的 scRNA-seq 数据,我们发现辛普森悖论,即没有和有区分反馈调节时,全基因组爆发动力学表现出不同的特征。我们还表明,反馈以不同的方式调节爆发频率和大小,并掩盖了转录起始位点分布对爆发动力学的影响。值得注意的是,只有在存在正反馈的情况下,TATA 基因才以高爆发频率表达,而增强子-启动子相互作用主要调节爆发频率。所开发的推理方法为研究转录爆发动力学提供了一种灵活高效的方法,并且所获得的结果将有助于理解细胞发育和命运决定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验