Suppr超能文献

作为哺乳动物衰老原因的表观遗传信息丢失。

Loss of epigenetic information as a cause of mammalian aging.

机构信息

Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA.

Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA; Department of Ophthalmology, Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.

出版信息

Cell. 2023 Jan 19;186(2):305-326.e27. doi: 10.1016/j.cell.2022.12.027. Epub 2023 Jan 12.

Abstract

All living things experience an increase in entropy, manifested as a loss of genetic and epigenetic information. In yeast, epigenetic information is lost over time due to the relocalization of chromatin-modifying proteins to DNA breaks, causing cells to lose their identity, a hallmark of yeast aging. Using a system called "ICE" (inducible changes to the epigenome), we find that the act of faithful DNA repair advances aging at physiological, cognitive, and molecular levels, including erosion of the epigenetic landscape, cellular exdifferentiation, senescence, and advancement of the DNA methylation clock, which can be reversed by OSK-mediated rejuvenation. These data are consistent with the information theory of aging, which states that a loss of epigenetic information is a reversible cause of aging.

摘要

所有生物都会经历熵的增加,表现为遗传和表观遗传信息的丧失。在酵母中,由于染色质修饰蛋白重新定位到 DNA 断裂处,表观遗传信息会随着时间的推移而丢失,导致细胞失去身份,这是酵母衰老的一个标志。使用一种称为“ICE”(诱导表观基因组变化)的系统,我们发现忠实的 DNA 修复行为会加速生理、认知和分子水平的衰老,包括表观遗传景观的侵蚀、细胞去分化、衰老和 DNA 甲基化时钟的推进,这可以通过 OSK 介导的年轻化来逆转。这些数据与衰老的信息理论一致,该理论指出,表观遗传信息的丧失是衰老的一个可逆原因。

相似文献

1
Loss of epigenetic information as a cause of mammalian aging.
Cell. 2023 Jan 19;186(2):305-326.e27. doi: 10.1016/j.cell.2022.12.027. Epub 2023 Jan 12.
2
Epigenetic changes during aging and their reprogramming potential.
Crit Rev Biochem Mol Biol. 2019 Feb;54(1):61-83. doi: 10.1080/10409238.2019.1570075. Epub 2019 Mar 1.
3
Epigenetic Drift Is a Determinant of Mammalian Lifespan.
Rejuvenation Res. 2017 Oct;20(5):430-436. doi: 10.1089/rej.2017.2024.
4
Is CpG Density the Link between Epigenetic Aging and Lifespan?
Trends Genet. 2020 Oct;36(10):725-727. doi: 10.1016/j.tig.2020.06.003. Epub 2020 Jul 2.
5
[Postnatal epigenome-mediated aging control and global trends].
Nihon Ronen Igakkai Zasshi. 2024;61(1):1-12. doi: 10.3143/geriatrics.61.1.
6
Aging and rejuvenation - a modular epigenome model.
Aging (Albany NY). 2021 Feb 24;13(4):4734-4746. doi: 10.18632/aging.202712.
7
Chemically induced reprogramming to reverse cellular aging.
Aging (Albany NY). 2023 Jul 12;15(13):5966-5989. doi: 10.18632/aging.204896.
8
Epigenetics recording varied environment and complex cell events represents the origin of cellular aging.
J Zhejiang Univ Sci B. 2019 Jul;20(7):550-562. doi: 10.1631/jzus.B1800507.
9
Age-associated epigenetic changes in mammalian sperm: implications for offspring health and development.
Hum Reprod Update. 2023 Jan 5;29(1):24-44. doi: 10.1093/humupd/dmac033.
10
Epigenetic Clock: Just a Convenient Marker or an Active Driver of Aging?
Adv Exp Med Biol. 2019;1178:175-206. doi: 10.1007/978-3-030-25650-0_10.

引用本文的文献

1
Aging by the clock and yet without a program.
Nat Aging. 2025 Sep 18. doi: 10.1038/s43587-025-00975-2.
3
Unravelling the genetics and epigenetics of the ageing tumour microenvironment in cancer.
Nat Rev Cancer. 2025 Sep 8. doi: 10.1038/s41568-025-00868-x.
4
Aging-associated DNA methylation of LEF1 modulates inflammation and neurodegenerative pathways.
Front Immunol. 2025 Aug 21;16:1656442. doi: 10.3389/fimmu.2025.1656442. eCollection 2025.
5
Epigenetic Regulation of Aging and its Rejuvenation.
MedComm (2020). 2025 Sep 1;6(9):e70369. doi: 10.1002/mco2.70369. eCollection 2025 Sep.
6
Effects of lactylation on the hallmarks of cancer (Review).
Oncol Lett. 2025 Aug 20;30(5):492. doi: 10.3892/ol.2025.15238. eCollection 2025 Nov.
7
Stage-specific requirement for METTL3-dependent mA epitranscriptomic regulation during myogenesis.
Commun Biol. 2025 Aug 30;8(1):1317. doi: 10.1038/s42003-025-08759-5.
9
How to measure and model cardiovascular aging.
Cardiovasc Res. 2025 Aug 28;121(10):1489-1508. doi: 10.1093/cvr/cvaf138.
10
Is the concept of mammalian epigenetic clocks universal and applicable to invertebrates?
Front Genet. 2025 Aug 8;16:1633921. doi: 10.3389/fgene.2025.1633921. eCollection 2025.

本文引用的文献

1
The relationship between epigenetic age and the hallmarks of aging in human cells.
Nat Aging. 2022 Jun;2(6):484-493. doi: 10.1038/s43587-022-00220-0. Epub 2022 May 16.
3
Inference of CRISPR Edits from Sanger Trace Data.
CRISPR J. 2022 Feb;5(1):123-130. doi: 10.1089/crispr.2021.0113. Epub 2022 Feb 2.
4
Increased somatic mutation burdens in normal human cells due to defective DNA polymerases.
Nat Genet. 2021 Oct;53(10):1434-1442. doi: 10.1038/s41588-021-00930-y. Epub 2021 Sep 30.
5
Genomic instability in the naturally and prematurely aged myocardium.
Proc Natl Acad Sci U S A. 2021 Sep 7;118(36). doi: 10.1073/pnas.2022974118.
7
Reprogramming to recover youthful epigenetic information and restore vision.
Nature. 2020 Dec;588(7836):124-129. doi: 10.1038/s41586-020-2975-4. Epub 2020 Dec 2.
8
The Pathobiology of Skin Aging: New Insights into an Old Dilemma.
Am J Pathol. 2020 Jul;190(7):1356-1369. doi: 10.1016/j.ajpath.2020.03.007. Epub 2020 Apr 1.
10
Cooler: scalable storage for Hi-C data and other genomically labeled arrays.
Bioinformatics. 2020 Jan 1;36(1):311-316. doi: 10.1093/bioinformatics/btz540.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验