Shen Wen-Chi, Yuh Chiou-Hwa, Lu Yu-Ting, Lin Yen-Hung, Ching Tsui-Ting, Wang Chao-Yung, Wang Horng-Dar
Institute of Biotechnology, National Tsing Hua University, HsinChu 300044, Taiwan.
Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Mioali Country 35053, Taiwan.
Antioxidants (Basel). 2023 Jan 4;12(1):124. doi: 10.3390/antiox12010124.
Deregulation of redox homeostasis is often associated with an accelerated aging process. Ribose-5-phosphate isomerase A (RPIA) mediates redox homeostasis in the pentose phosphate pathway (PPP). Our previous study demonstrated that knockdown boosts the healthspan in . However, whether the knockdown of , the ortholog in , can improve the healthspan in remains unknown. Here, we report that spatially and temporally limited knockdown of prolongs lifespan and improves the healthspan in , reflecting the evolutionarily conserved phenotypes observed in . Ubiquitous and pan-neuronal knockdown of both enhance tolerance to oxidative stress, reduce polyglutamine aggregation, and improve the deteriorated body bending rate caused by polyglutamine aggregation. Additionally, knockdown temporally in the post-developmental stage and spatially in the neuron display enhanced lifespan. Specifically, knockdown in glutamatergic or cholinergic neurons is sufficient to increase lifespan. Importantly, the lifespan extension by knockdown requires the activation of autophagy and AMPK pathways and reduced TOR signaling. Moreover, the RNA-seq data support our experimental findings and reveal potential novel downstream targets. Together, our data disclose the specific spatial and temporal conditions and the molecular mechanisms for knockdown-mediated longevity in . These findings may help the understanding and improvement of longevity in humans.
氧化还原稳态失调通常与加速衰老过程相关。5-磷酸核糖异构酶A(RPIA)在磷酸戊糖途径(PPP)中调节氧化还原稳态。我们之前的研究表明,敲低RPIA可延长线虫的健康寿命。然而,在果蝇中敲低其直系同源基因RPIA是否能改善果蝇的健康寿命仍不清楚。在此,我们报告在果蝇中时空有限地敲低RPIA可延长其寿命并改善健康寿命,这反映了在线虫中观察到的进化保守表型。在果蝇中普遍和全神经元敲低RPIA均可增强对氧化应激的耐受性,减少多聚谷氨酰胺聚集,并改善由多聚谷氨酰胺聚集引起的身体弯曲率恶化。此外,在发育后期进行时间上的敲低以及在神经元中进行空间上的敲低均显示果蝇寿命延长。具体而言,在谷氨酸能或胆碱能神经元中敲低RPIA足以延长寿命。重要的是,敲低RPIA导致的寿命延长需要自噬和AMPK途径的激活以及TOR信号的减少。此外,RNA测序数据支持我们的实验结果并揭示了潜在的新下游靶点。总之,我们的数据揭示了果蝇中敲低RPIA介导长寿的特定时空条件和分子机制。这些发现可能有助于理解和改善人类的长寿。