i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
Faculty of Dental Medicine of the University of Porto, R. Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; LAQV/REQUIMTE - Laboratório Associado para a Química Verde/Rede de Química e Tecnologia, Portugal.
Biomater Adv. 2023 Mar;146:213280. doi: 10.1016/j.bioadv.2023.213280. Epub 2023 Jan 7.
Despite bone's innate self-renewal capability, some periodontal pathologic and traumatic defects' size inhibits full spontaneous regeneration. This current research characterized a 3D porous biodegradable nano-hydroxyapatite/chitosan (nHAp/CS, 70/30) scaffold for periodontal bone regeneration, which preparation method includes the final solvent extraction and sterilization through supercritical CO (scCO). Micro-CT analysis revealed the fully interconnected porous microstructure of the nHAp/CS scaffold (total porosity 78 %, medium pore size 200 μm) which is critical for bone regeneration. Scanning electron microscopy (SEM) showed HAp crystals forming on the surface of the nHAp/CS scaffold after 21 days in simulated body fluid, demonstrating its bioactivity in vitro. The presence of nHAp in the scaffolds promoted a significantly lower biodegradation rate compared to a plain CS scaffold in PBS. Dynamic mechanical analysis confirmed their viscoelasticity, but the presence of nHAp significantly enhanced the storage modulus (42.34 ± 6.09 kPa at 10 Hz after 28 days in PBS), showing that it may support bone ingrowth at low-load bearing bone defects. Both scaffold types significantly inhibited the growth, attachment and colony formation abilities of S. aureus and E. coli, enhancing the relevance of chitosan in the grafts' composition for the naturally contaminated oral environment. At SEM and laser scanning confocal microscopy, MG63 cells showed normal morphology and could adhere and proliferate inside the biomaterials' porous structure, especially for the nHAp/CS scaffold, reaching higher proliferative rate at day 14. MG63 cells seeded within nHAp/CS scaffolds presented a higher expression of RUNX2, collagen A1 and Sp7 osteogenic genes compared to the CS samples. The in vivo subcutaneous implantation in mice of both scaffold types showed lower biodegradability with the preservation of the scaffolds porous structure that allowed the ingrowth of connective tissue until 5 weeks. Histology shows an intensive and progressive ingrowth of new vessels and collagen between the 3 and the 5 week, especially for the nHAp/CS scaffold. So far, the scCO method enabled the production of a cost-effective and environment-friendly ready-to-use nHAp/CS scaffold with microstructural, chemical, mechanical and biocompatibility features that make it a suitable bone graft alternative for defect sites in an adverse environment as in periodontitis and peri-implantitis.
尽管骨骼具有内在的自我更新能力,但一些牙周病病理和创伤性缺陷的大小会抑制完全自发的再生。本研究旨在表征一种 3D 多孔可生物降解纳米羟基磷灰石/壳聚糖(nHAp/CS,70/30)支架,用于牙周骨再生,其制备方法包括最终通过超临界 CO(scCO)进行溶剂提取和灭菌。微 CT 分析显示,nHAp/CS 支架具有完全互连的多孔微观结构(总孔隙率为 78%,中孔尺寸为 200μm),这对骨再生至关重要。扫描电子显微镜(SEM)显示,在模拟体液中培养 21 天后,nHAp/CS 支架表面形成了 HAp 晶体,证明其具有体外生物活性。支架中 nHAp 的存在显著降低了 PBS 中与纯 CS 支架相比的降解率。动态力学分析证实了它们的粘弹性,但 nHAp 的存在显著提高了储存模量(在 PBS 中培养 28 天后,10Hz 时为 42.34±6.09kPa),表明它可能支持低负荷承载骨缺损处的骨长入。两种支架类型均显著抑制了金黄色葡萄球菌和大肠杆菌的生长、附着和集落形成能力,增强了壳聚糖在移植物组成中的相关性,以适应自然污染的口腔环境。在 SEM 和激光扫描共聚焦显微镜下,MG63 细胞形态正常,可在生物材料多孔结构内附着和增殖,尤其是 nHAp/CS 支架,在第 14 天达到更高的增殖率。在 nHAp/CS 支架内接种的 MG63 细胞与 CS 样本相比,RUNX2、胶原 A1 和 Sp7 成骨基因的表达更高。两种支架类型在小鼠皮下植入的体内实验表明,降解率较低,支架多孔结构得以保留,允许结缔组织长入,直到第 5 周。组织学显示,在第 3 周到第 5 周之间,新血管和胶原的密集和渐进性长入,特别是对于 nHAp/CS 支架。到目前为止,scCO 方法能够生产出具有成本效益和环境友好的即用型 nHAp/CS 支架,具有微观结构、化学、机械和生物相容性特征,使其成为牙周炎和种植体周围炎等不良环境中缺陷部位的合适骨替代物。