Suppr超能文献

用于预测术后出院阿片类药物需求的个体化阿片类药物处方模型。

A Personalized Opioid Prescription Model for Predicting Postoperative Discharge Opioid Needs.

机构信息

From the Department of Plastic and Reconstructive Surgery.

Center for Regenerative Medicine, Nationwide Children's Hospital.

出版信息

Plast Reconstr Surg. 2023 Feb 1;151(2):450-460. doi: 10.1097/PRS.0000000000009865. Epub 2022 Nov 15.

Abstract

BACKGROUND

Opioid overprescribing after surgery is common. There is currently no universal predictive tool available to accurately anticipate postdischarge opioid need in a patient-specific manner. This study examined the efficacy of a patient-specific opioid prescribing framework for estimating postdischarge opioid consumption.

METHODS

A total of 149 patients were evaluated for a single-center retrospective cohort study of plastic and reconstructive surgery patients. Patients with length of stay of 2 to 8 days and quantifiable inpatient opioid consumption (n = 116) were included. Each patient's daily postoperative inpatient opioid consumption was used to generate a personalized logarithmic regression model to estimate postdischarge opioid need. The validity of the personalized opioid prescription (POP) model was tested through comparison with actual postdischarge opioid consumption reported by patients 4 weeks after surgery. The accuracy of the POP model was compared with two other opioid prescribing models.

RESULTS

The POP model had the strongest association (R2 = 0.899; P < 0.0001) between model output and postdischarge opioid consumption when compared to a procedure-based (R2 = 0.226; P = 0.025) or a 24-hour (R2 = 0.152; P = 0.007) model. Accuracy of the POP model was unaffected by age, gender identity, procedure type, or length of stay. Odds of persistent use at 4 weeks increased, with a postdischarge estimated opioid need at a rate of 1.16 per 37.5 oral morphine equivalents (P = 0.010; 95% CI, 1.04 to 1.30).

CONCLUSIONS

The POP model accurately estimates postdischarge opioid consumption and risk of developing persistent use in plastic surgery patients. Use of the POP model in clinical practice may lead to more appropriate and personalized opioid prescribing.

摘要

背景

手术后阿片类药物过度处方很常见。目前尚无通用的预测工具能够准确地预测患者的术后阿片类药物需求。本研究探讨了一种个体化阿片类药物处方框架预测术后阿片类药物消耗的效果。

方法

对 149 名患者进行了一项回顾性单中心队列研究,纳入了整形外科患者。纳入的患者住院时间为 2 至 8 天,且可量化住院期间阿片类药物的使用量(n=116)。使用每位患者术后的每日住院期间阿片类药物消耗量生成个体化对数回归模型,以估算术后的阿片类药物需求。通过与术后 4 周患者报告的实际术后阿片类药物消耗进行比较,来检验个体化阿片类药物处方(POP)模型的有效性。比较了 POP 模型与另外两种阿片类药物处方模型的准确性。

结果

与基于手术的模型(R2=0.226;P=0.025)或 24 小时模型(R2=0.152;P=0.007)相比,POP 模型与术后阿片类药物消耗之间的相关性最强(R2=0.899;P<0.0001)。POP 模型的准确性不受年龄、性别认同、手术类型或住院时间的影响。4 周时持续使用的可能性增加,出院后预计阿片类药物需求以每 37.5 个口服吗啡当量增加 1.16(P=0.010;95%CI,1.04 至 1.30)。

结论

POP 模型可准确估计整形外科患者的术后阿片类药物消耗和持续使用的风险。在临床实践中使用 POP 模型可能会导致更合理、更个体化的阿片类药物处方。

相似文献

1
A Personalized Opioid Prescription Model for Predicting Postoperative Discharge Opioid Needs.
Plast Reconstr Surg. 2023 Feb 1;151(2):450-460. doi: 10.1097/PRS.0000000000009865. Epub 2022 Nov 15.
2
A comprehensive model for pain management in patients undergoing pelvic reconstructive surgery: a prospective clinical practice study.
Am J Obstet Gynecol. 2020 Aug;223(2):262.e1-262.e8. doi: 10.1016/j.ajog.2020.05.019. Epub 2020 May 13.
3
Who doesn't fit? A multi-institutional study using machine learning to uncover the limits of opioid prescribing guidelines.
Surgery. 2022 Aug;172(2):655-662. doi: 10.1016/j.surg.2022.03.027. Epub 2022 May 5.
4
Patient-centered Opioid Prescribing: Breaking Away From One-Size-Fits-All Prescribing Guidelines.
J Surg Res. 2021 Aug;264:1-7. doi: 10.1016/j.jss.2021.01.048. Epub 2021 Mar 18.
6
A bundle of opioid-sparing strategies to eliminate routine opioid prescribing in a urogynecology practice.
Am J Obstet Gynecol. 2024 Aug;231(2):278.e1-278.e17. doi: 10.1016/j.ajog.2024.05.043. Epub 2024 May 25.
8
Evaluation of Opioid Prescription and Consumption Habits Following Endovascular Aortic Aneurysm Repair.
Ann Vasc Surg. 2021 Jul;74:158-164. doi: 10.1016/j.avsg.2020.12.033. Epub 2021 Feb 4.
10
Development and Validation of a Model to Predict Postdischarge Opioid Use After Cesarean Birth.
Obstet Gynecol. 2022 May 1;139(5):888-897. doi: 10.1097/AOG.0000000000004759. Epub 2022 Apr 5.

引用本文的文献

2
Precision Opioid Prescription in ICU Surgery: Insights from an Interpretable Deep Learning Framework.
J Surg (Lisle). 2024;9(15). doi: 10.29011/2575-9760.11189. Epub 2024 Nov 27.
3
Use of Muscle Relaxants for Acute Postoperative Pain: A Practical Review.
Plast Reconstr Surg Glob Open. 2024 Jul 1;12(7):e5938. doi: 10.1097/GOX.0000000000005938. eCollection 2024 Jul.
5
Methods in regression analysis in surgical oncology research-best practice guidelines.
J Surg Oncol. 2024 Jan;129(1):183-193. doi: 10.1002/jso.27533. Epub 2023 Nov 22.

本文引用的文献

1
Opioid Overprescribing and Procedure-Specific Opioid Consumption Patterns for Plastic and Reconstructive Surgery Patients.
Plast Reconstr Surg. 2021 Apr 1;147(4):669e-679e. doi: 10.1097/PRS.0000000000007782.
2
Development of Persistent Opioid Use After Cardiac Surgery.
JAMA Cardiol. 2020 Aug 1;5(8):889-896. doi: 10.1001/jamacardio.2020.1445.
3
Rate and Risk Factors Associated With Prolonged Opioid Use After Surgery: A Systematic Review and Meta-analysis.
JAMA Netw Open. 2020 Jun 1;3(6):e207367. doi: 10.1001/jamanetworkopen.2020.7367.
4
6
Predicting Opioid Use Following Discharge After Cesarean Delivery.
Ann Fam Med. 2020 Mar;18(2):118-126. doi: 10.1370/afm.2493.
7
Association of Opioid Prescribing Patterns With Prescription Opioid Overdose in Adolescents and Young Adults.
JAMA Pediatr. 2020 Feb 1;174(2):141-148. doi: 10.1001/jamapediatrics.2019.4878.
8
Rates of New Persistent Opioid Use After Vaginal or Cesarean Birth Among US Women.
JAMA Netw Open. 2019 Jul 3;2(7):e197863. doi: 10.1001/jamanetworkopen.2019.7863.
9
Association of Opioid Overdose With Opioid Prescriptions to Family Members.
JAMA Intern Med. 2019 Sep 1;179(9):1186-1192. doi: 10.1001/jamainternmed.2019.1064.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验