Suppr超能文献

软机器人在辅助移动方面的最新进展:对物理治疗师和患者确定的当前下肢外骨骼的局限性以及潜在的软机器人解决方案的综述。

The-state-of-the-art of soft robotics to assist mobility: a review of physiotherapist and patient identified limitations of current lower-limb exoskeletons and the potential soft-robotic solutions.

机构信息

Centre for Health and Clinical Research, University of the West of England, Bristol, UK.

Bristol Robotics Laboratory, Bristol, UK.

出版信息

J Neuroeng Rehabil. 2023 Jan 30;20(1):18. doi: 10.1186/s12984-022-01122-3.

Abstract

BACKGROUND

Soft, wearable, powered exoskeletons are novel devices that may assist rehabilitation, allowing users to walk further or carry out activities of daily living. However, soft robotic exoskeletons, and the more commonly used rigid exoskeletons, are not widely adopted clinically. The available evidence highlights a disconnect between the needs of exoskeleton users and the engineers designing devices. This review aimed to explore the literature on physiotherapist and patient perspectives of the longer-standing, and therefore greater evidenced, rigid exoskeleton limitations. It then offered potential solutions to these limitations, including soft robotics, from an engineering standpoint.

METHODS

A state-of-the-art review was carried out which included both qualitative and quantitative research papers regarding patient and/or physiotherapist perspectives of rigid exoskeletons. Papers were themed and themes formed the review's framework.

RESULTS

Six main themes regarding the limitations of soft exoskeletons were important to physiotherapists and patients: safety; a one-size-fits approach; ease of device use; weight and placement of device; cost of device; and, specific to patients only, appearance of the device. Potential soft-robotics solutions to address these limitations were offered, including compliant actuators, sensors, suit attachments fitting to user's body, and the use of control algorithms.

CONCLUSIONS

It is evident that current exoskeletons are not meeting the needs of their users. Solutions to the limitations offered may inform device development. However, the solutions are not infallible and thus further research and development is required.

摘要

背景

柔软、可穿戴、动力外骨骼是新颖的设备,可帮助康复,使使用者能够走得更远或进行日常生活活动。然而,柔软的机器人外骨骼和更常用的刚性外骨骼在临床上并未广泛采用。现有证据强调了外骨骼使用者的需求与设计设备的工程师之间的脱节。本综述旨在探讨文献中关于物理治疗师和患者对更长期存在的、因此更有证据的刚性外骨骼局限性的看法。然后,从工程角度出发,为这些局限性提供了潜在的解决方案,包括软机器人。

方法

进行了一项最先进的综述,其中包括关于患者和/或物理治疗师对刚性外骨骼看法的定性和定量研究论文。论文进行了主题分析,主题构成了综述的框架。

结果

对于软外骨骼的局限性,物理治疗师和患者认为有六个主要问题很重要:安全性;一刀切的方法;设备使用的便利性;设备的重量和位置;设备的成本;以及,仅针对患者,设备的外观。提出了一些潜在的软机器人解决方案来解决这些局限性,包括顺应式执行器、传感器、适合用户身体的套装附件以及控制算法的使用。

结论

显然,当前的外骨骼无法满足用户的需求。提供的解决方案可能为设备开发提供信息。然而,这些解决方案并非万无一失,因此需要进一步的研究和开发。

相似文献

2
Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments.
J Neuroeng Rehabil. 2021 Feb 1;18(1):22. doi: 10.1186/s12984-021-00815-5.
4
Upper limb soft robotic wearable devices: a systematic review.
J Neuroeng Rehabil. 2022 Aug 10;19(1):87. doi: 10.1186/s12984-022-01065-9.
7
Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods.
Proc Inst Mech Eng H. 2021 Dec;235(12):1375-1385. doi: 10.1177/09544119211032010. Epub 2021 Jul 13.
8
State of the Art and Future Directions for Lower Limb Robotic Exoskeletons.
IEEE Trans Neural Syst Rehabil Eng. 2017 Feb;25(2):171-182. doi: 10.1109/TNSRE.2016.2521160. Epub 2016 Jan 27.
10
Clinician Perceptions of Robotic Exoskeletons for Locomotor Training After Spinal Cord Injury: A Qualitative Approach.
Arch Phys Med Rehabil. 2021 Feb;102(2):203-215. doi: 10.1016/j.apmr.2020.08.024. Epub 2020 Nov 7.

引用本文的文献

2
Understanding the perspectives of older adults and physiotherapists on home-based lower-limb exoskeletons.
Wearable Technol. 2025 Jul 14;6:e31. doi: 10.1017/wtc.2025.10015. eCollection 2025.
4
Exoskeletons for the rehabilitation of temporomandibular disorders: a comprehensive review.
Front Robot AI. 2025 May 2;12:1492275. doi: 10.3389/frobt.2025.1492275. eCollection 2025.
6
Tailoring robot-assisted arm training to individuals with stroke: bridging neuroscience principles and clinical practice.
Front Neurol. 2025 Jan 29;16:1506889. doi: 10.3389/fneur.2025.1506889. eCollection 2025.
8
Soft Robotics in Upper Limb Neurorehabilitation and Assistance: Current Clinical Evidence and Recommendations.
Soft Robot. 2025 Jun;12(3):303-314. doi: 10.1089/soro.2024.0034. Epub 2024 Dec 30.
10
Design of an SMA-Based Actuator for Replicating Normal Gait Patterns in Pediatric Patients with Cerebral Palsy.
Biomimetics (Basel). 2024 Jun 21;9(7):376. doi: 10.3390/biomimetics9070376.

本文引用的文献

3
The sustainability of upper limb robotic therapy for stroke survivors in an inpatient rehabilitation setting.
Disabil Rehabil. 2022 Dec;44(24):7522-7527. doi: 10.1080/09638288.2021.1998664. Epub 2021 Dec 14.
4
Electro-pneumatic pumps for soft robotics.
Sci Robot. 2021 Feb 17;6(51). doi: 10.1126/scirobotics.abc3721.
5
Closed-Loop Control of Electro-Ribbon Actuators.
Front Robot AI. 2020 Nov 16;7:557624. doi: 10.3389/frobt.2020.557624. eCollection 2020.
6
Electrically-Driven Soft Fluidic Actuators Combining Stretchable Pumps With Thin McKibben Muscles.
Front Robot AI. 2020 Jan 10;6:146. doi: 10.3389/frobt.2019.00146. eCollection 2019.
7
A Soft-Inflatable Exosuit for Knee Rehabilitation: Assisting Swing Phase During Walking.
Front Robot AI. 2018 May 17;5:44. doi: 10.3389/frobt.2018.00044. eCollection 2018.
10
Electro-ribbon actuators and electro-origami robots.
Sci Robot. 2018 Dec 19;3(25). doi: 10.1126/scirobotics.aau9795.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验