School of Biological Sciences, University of Ulsan, Ulsan, 44610, Korea.
Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea.
Autophagy. 2023 Jul;19(7):2111-2142. doi: 10.1080/15548627.2023.2173900. Epub 2023 Feb 9.
There are diverse links between macroautophagy/autophagy pathways and unfolded protein response (UPR) pathways under endoplasmic reticulum (ER) stress conditions to restore ER homeostasis. Phosphorylation of EIF2S1/eIF2α is an important mechanism that can regulate all three UPR pathways through transcriptional and translational reprogramming to maintain cellular homeostasis and overcome cellular stresses. In this study, to investigate the roles of EIF2S1 phosphorylation in regulation of autophagy during ER stress, we used EIF2S1 phosphorylation-deficient () cells in which residue 51 was mutated from serine to alanine. cells exhibited defects in several steps of autophagic processes (such as autophagosome and autolysosome formation) that are regulated by the transcriptional activities of the autophagy master transcription factors TFEB and TFE3 under ER stress conditions. EIF2S1 phosphorylation was required for nuclear translocation of TFEB and TFE3 during ER stress. In addition, EIF2AK3/PERK, PPP3/calcineurin-mediated dephosphorylation of TFEB and TFE3, and YWHA/14-3-3 dissociation were required for their nuclear translocation, but were insufficient to induce their nuclear retention during ER stress. Overexpression of the activated ATF6/ATF6α form, XBP1s, and ATF4 differentially rescued defects of TFEB and TFE3 nuclear translocation in cells during ER stress. Consequently, overexpression of the activated ATF6 or TFEB form more efficiently rescued autophagic defects, although XBP1s and ATF4 also displayed an ability to restore autophagy in cells during ER stress. Our results suggest that EIF2S1 phosphorylation is important for autophagy and UPR pathways, to restore ER homeostasis and reveal how EIF2S1 phosphorylation connects UPR pathways to autophagy. : EIF2S1 phosphorylation-deficient; ACTB: actin beta; : adenovirus-; ATF6: activating transcription factor 6; ATZ: SERPINA1/α1-antitrypsin with an E342K (Z) mutation; Baf A1: bafilomycin A; BSA: bovine serum albumin; CDK4: cyclin dependent kinase 4; CDK6: cyclin dependent kinase 6; CHX: cycloheximide; CLEAR: coordinated lysosomal expression and regulation; Co-IP: coimmunoprecipitation; CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; DAPI: 4',6-diamidino-2-phenylindole dihydrochloride; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; DTT: dithiothreitol; EBSS: Earle's Balanced Salt Solution; EGFP: enhanced green fluorescent protein; EIF2S1/eIF2α: eukaryotic translation initiation factor 2 subunit alpha; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; ERAD: endoplasmic reticulum-associated degradation; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FBS: fetal bovine serum; gRNA: guide RNA; GSK3B/GSK3β: glycogen synthase kinase 3 beta; HA: hemagglutinin; : immortalized hepatocyte; IF: immunofluorescence; IRES: internal ribosome entry site; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LMB: leptomycin B; LPS: lipopolysaccharide; MAP1LC3A/B/LC3A/B: microtubule associated protein 1 light chain 3 alpha/beta; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; MFI: mean fluorescence intensity; MTORC1: mechanistic target of rapamycin kinase complex 1; NES: nuclear export signal; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; OE: overexpression; PBS: phosphate-buffered saline; PLA: proximity ligation assay; PPP3/calcineurin: protein phosphatase 3; PTM: post-translational modification; SDS: sodium dodecyl sulfate; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SEM: standard error of the mean; TEM: transmission electron microscopy; TFE3: transcription factor E3; TFEB: transcription factor EB; TFs: transcription factors; Tg: thapsigargin; Tm: tunicamycin; UPR: unfolded protein response; WB: western blot; WT: wild-type; : spliced ; XPO1/CRM1: exportin 1.
有多种链接之间的宏观自噬/自噬途径和未折叠蛋白反应 (UPR) 途径在内质网 (ER) 应激条件下恢复 ER 稳态。EIF2S1/eIF2α 的磷酸化是一种重要的机制,可以通过转录和翻译重编程来调节所有三种 UPR 途径,以维持细胞内稳态并克服细胞应激。在这项研究中,为了研究 EIF2S1 磷酸化在 ER 应激期间调节自噬的作用,我们使用了 EIF2S1 磷酸化缺陷 () 细胞,其中残基 51 从丝氨酸突变为丙氨酸。细胞在 ER 应激条件下,在转录因子 TFEB 和 TFE3 的转录活性调节下,自噬过程的几个步骤 (如自噬体和自噬溶酶体形成) 出现缺陷。EIF2S1 磷酸化是 ER 应激期间 TFEB 和 TFE3 核易位所必需的。此外,EIF2AK3/PERK、PPP3/calcineurin 介导的 TFEB 和 TFE3 去磷酸化以及 YWHA/14-3-3 解离是核易位所必需的,但不足以在 ER 应激期间诱导其核保留。激活的 ATF6/ATF6α 形式、XBP1s 和 ATF4 的过表达在 ER 应激期间不同程度地挽救了细胞中 TFEB 和 TFE3 核易位的缺陷。因此,尽管 XBP1s 和 ATF4 也显示出在 ER 应激期间恢复自噬的能力,但激活的 ATF6 或 TFEB 形式的过表达更有效地挽救了自噬缺陷。我们的结果表明,EIF2S1 磷酸化对于自噬和 UPR 途径很重要,以恢复 ER 稳态,并揭示了 EIF2S1 磷酸化如何将 UPR 途径与自噬联系起来。:EIF2S1 磷酸化缺陷;ACTB:肌动蛋白β;:腺病毒-;ATF6:激活转录因子 6;ATZ:SERPINA1/α1-抗胰蛋白酶具有 E342K(Z)突变;Baf A1:巴佛洛霉素 A;BSA:牛血清白蛋白;CDK4:细胞周期蛋白依赖激酶 4;CDK6:细胞周期蛋白依赖激酶 6;CHX:环己酰亚胺;CLEAR:协调溶酶体表达和调节;Co-IP:免疫沉淀;CTSB:组织蛋白酶 B;CTSD:组织蛋白酶 D;CTSL:组织蛋白酶 L;DAPI:4',6-二脒基-2-苯基吲哚二盐酸盐;DMEM:杜尔贝科改良 Eagle 培养基;DMSO:二甲基亚砜;DTT:二硫苏糖醇;EBSS:Earle 的平衡盐溶液;EGFP:增强型绿色荧光蛋白;EIF2S1/eIF2α:真核翻译起始因子 2 亚单位α;EIF2AK3/PERK:真核翻译起始因子 2α激酶 3;ER:内质网;ERAD:内质网相关降解;ERN1/IRE1α:内质网到细胞核信号 1;FBS:胎牛血清;gRNA:向导 RNA;GSK3B/GSK3β:糖原合成酶激酶 3β;HA:血凝素;:永生化肝细胞;IF:免疫荧光;IRES:内部核糖体进入位点;KO:敲除;LAMP1:溶酶体相关膜蛋白 1;LMB:莱普霉素 B;LPS:脂多糖;MAP1LC3A/B/LC3A/B:微管相关蛋白 1 轻链 3α/β;MAP1LC3B/LC3B:微管相关蛋白 1 轻链 3β;MEFs:小鼠胚胎成纤维细胞;MFI:平均荧光强度;MTORC1:雷帕霉素激酶复合物 1;NES:核输出信号;NFE2L2/NRF2:NFE2 样 bZIP 转录因子 2;OE:过表达;PBS:磷酸盐缓冲盐水;PLA:邻近连接分析;PPP3/calcineurin:蛋白磷酸酶 3;PTM:翻译后修饰;SDS:十二烷基硫酸钠;SDS-PAGE:十二烷基硫酸钠-聚丙烯酰胺凝胶电泳;SEM:标准误差的平均值;TEM:透射电子显微镜;TFE3:转录因子 E3;TFEB:转录因子 EB;TFs:转录因子;Tg:他普西龙;Tm:衣霉素;UPR:未折叠蛋白反应;WB:western blot;WT:野生型;:剪接;XPO1/CRM1:出口蛋白 1。