Instituto de Biologia Funcional y Genomica (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain.
Instituto de Investigacion Biomedica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, Salamanca, Spain.
Essays Biochem. 2023 Mar 3;67(1):17-26. doi: 10.1042/EBC20220075.
Astrocytes show unique anatomical, morphological, and metabolic features to take up substrates from the blood and metabolize them for local delivery to active synapses to sustain neuron function. In the present review, we specifically focus on key molecular aspects of energy and redox metabolism that facilitate this astrocyte-neuronal coupling in a controlled manner. Basal glycolysis is co-ordinated by the anaphase-promoting complex/cyclosome (APC/C)-Cdh1, a ubiquitin ligase that targets the proglycolytic enzyme 6-phosphofructokinase-2,6-bisphosphastate-3 (PFKFB3) for degradation. APC/C-Cdh1 activity is more robust in neurons than in astrocytes, which determine that PFKFB3 abundance and glycolytic rate are weaker in neurons. The low PFKFB3 activity in neurons facilitates glucose-6-phosphate oxidation via the pentose-phosphate pathway, which promotes antioxidant protection. Conversely, the high PFKFB3 activity in astrocytes allows the production and release of glycolytic lactate, which is taken up by neurons that use it as an oxidizable substrate. Importantly, the mitochondrial respiratory chain is tighter assembled in neurons than in astrocytes, thus the bioenergetic efficiency of mitochondria is higher in neurons. Because of this, the production of reactive oxygen species (mROS) by mitochondrial complex I is very low in neurons and very high in astrocytes. Such a naturally occurring high abundance of mROS in astrocytes physiologically determines a specific transcriptional fingerprint that contributes to sustaining cognitive performance. We conclude that the energy and redox metabolism of astrocytes must complementarily match that of neurons to regulate brain function and animal welfare.
星形胶质细胞具有独特的解剖、形态和代谢特征,可从血液中摄取底物并代谢它们,以局部递送至活跃的突触,从而维持神经元功能。在本综述中,我们特别关注能量和氧化还原代谢的关键分子方面,这些方面以受控的方式促进这种星形胶质细胞-神经元偶联。基础糖酵解由后期促进复合物/环体(APC/C)-Cdh1 协调,后者是一种泛素连接酶,可靶向proglycolytic 酶 6-磷酸果糖激酶-2,6-二磷酸-3(PFKFB3)进行降解。APC/C-Cdh1 在神经元中的活性比在星形胶质细胞中更强,这决定了 PFKFB3 的丰度和糖酵解速率在神经元中较弱。神经元中低的 PFKFB3 活性促进葡萄糖-6-磷酸通过戊糖磷酸途径氧化,从而促进抗氧化保护。相反,星形胶质细胞中高的 PFKFB3 活性允许产生和释放糖酵解乳酸,神经元摄取它作为可氧化的底物。重要的是,神经元中线粒体呼吸链的组装比星形胶质细胞更紧密,因此神经元中线粒体的生物能量效率更高。由于这个原因,线粒体复合物 I 产生的活性氧物质(mROS)在神经元中非常低,而在星形胶质细胞中非常高。这种星形胶质细胞中自然存在的大量 mROS 决定了一种特定的转录特征,有助于维持认知表现。我们得出结论,星形胶质细胞的能量和氧化还原代谢必须与神经元互补,以调节大脑功能和动物福利。