Suppr超能文献

暴发信息基因组报告:可扩展和动态监测 SARS-CoV-2 变体和突变。

Outbreak.info genomic reports: scalable and dynamic surveillance of SARS-CoV-2 variants and mutations.

机构信息

Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.

Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.

出版信息

Nat Methods. 2023 Apr;20(4):512-522. doi: 10.1038/s41592-023-01769-3. Epub 2023 Feb 23.

Abstract

In response to the emergence of SARS-CoV-2 variants of concern, the global scientific community, through unprecedented effort, has sequenced and shared over 11 million genomes through GISAID, as of May 2022. This extraordinarily high sampling rate provides a unique opportunity to track the evolution of the virus in near real-time. Here, we present outbreak.info , a platform that currently tracks over 40 million combinations of Pango lineages and individual mutations, across over 7,000 locations, to provide insights for researchers, public health officials and the general public. We describe the interpretable visualizations available in our web application, the pipelines that enable the scalable ingestion of heterogeneous sources of SARS-CoV-2 variant data and the server infrastructure that enables widespread data dissemination via a high-performance API that can be accessed using an R package. We show how outbreak.info can be used for genomic surveillance and as a hypothesis-generation tool to understand the ongoing pandemic at varying geographic and temporal scales.

摘要

针对 SARS-CoV-2 变异株的出现,全球科学界通过前所未有的努力,截至 2022 年 5 月,通过 GISAID 对超过 1100 万份基因组进行了测序和共享。如此高的采样率为实时跟踪病毒的进化提供了独特的机会。在这里,我们介绍 outbreak.info,这是一个平台,目前在 7000 多个地点跟踪超过 4000 万个 Pango 谱系和个体突变的组合,为研究人员、公共卫生官员和公众提供了深入了解病毒的机会。我们描述了我们的网络应用程序中可用的可解释可视化效果、可实现 SARS-CoV-2 变异数据异质源可扩展摄取的管道,以及通过高性能 API 实现广泛数据分发的服务器基础设施,该 API 可使用 R 包访问。我们展示了 outbreak.info 如何用于基因组监测以及作为生成假设的工具,以在不同的地理和时间尺度上了解正在进行的大流行。

相似文献

1
Outbreak.info genomic reports: scalable and dynamic surveillance of SARS-CoV-2 variants and mutations.
Nat Methods. 2023 Apr;20(4):512-522. doi: 10.1038/s41592-023-01769-3. Epub 2023 Feb 23.
2
Outbreak.info genomic reports: scalable and dynamic surveillance of SARS-CoV-2 variants and mutations.
Res Sq. 2022 Jun 28:rs.3.rs-1723829. doi: 10.21203/rs.3.rs-1723829/v1.
3
Taxonium, a web-based tool for exploring large phylogenetic trees.
Elife. 2022 Nov 15;11:e82392. doi: 10.7554/eLife.82392.
5
Pango lineage designation and assignment using SARS-CoV-2 spike gene nucleotide sequences.
BMC Genomics. 2022 Feb 11;23(1):121. doi: 10.1186/s12864-022-08358-2.
6
Wastewater Genomic Surveillance Captures Early Detection of Omicron in Utah.
Microbiol Spectr. 2023 Jun 15;11(3):e0039123. doi: 10.1128/spectrum.00391-23. Epub 2023 May 8.
9
Genomics, social media and mobile phone data enable mapping of SARS-CoV-2 lineages to inform health policy in Bangladesh.
Nat Microbiol. 2021 Oct;6(10):1271-1278. doi: 10.1038/s41564-021-00955-3. Epub 2021 Sep 8.

引用本文的文献

1
SARS-CoV-2 infection dynamics in a MHCI-mismatched lung transplant recipient.
Nat Commun. 2025 Sep 16;16(1):8292. doi: 10.1038/s41467-025-63681-y.
2
Beyond clinical data: the role of sewage monitoring in tracking pandemic trends of SARS-CoV-2.
Front Microbiol. 2025 Aug 19;16:1657397. doi: 10.3389/fmicb.2025.1657397. eCollection 2025.
5
6
8
Structural impact of synonymous mutations in six SARS-CoV-2 Variants of Concern.
PLoS One. 2025 Jul 1;20(7):e0325858. doi: 10.1371/journal.pone.0325858. eCollection 2025.
9
Developing molecular surveillance of SARS-CoV-2 in the Czech Republic (2021-2022).
Sci Rep. 2025 Jun 4;15(1):19690. doi: 10.1038/s41598-025-01074-3.
10
Balancing health and socioeconomic impacts: A uniform framework for evaluating non-pharmaceutical interventions.
PLoS One. 2025 Jun 2;20(6):e0324232. doi: 10.1371/journal.pone.0324232. eCollection 2025.

本文引用的文献

1
The origins and molecular evolution of SARS-CoV-2 lineage B.1.1.7 in the UK.
Virus Evol. 2022 Aug 26;8(2):veac080. doi: 10.1093/ve/veac080. eCollection 2022.
2
Global disparities in SARS-CoV-2 genomic surveillance.
Nat Commun. 2022 Nov 16;13(1):7003. doi: 10.1038/s41467-022-33713-y.
3
Omicron BA.4/BA.5 escape neutralizing immunity elicited by BA.1 infection.
Nat Commun. 2022 Aug 10;13(1):4686. doi: 10.1038/s41467-022-32396-9.
4
BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection.
Nature. 2022 Aug;608(7923):593-602. doi: 10.1038/s41586-022-04980-y. Epub 2022 Jun 17.
5
Omicron infection enhances Delta antibody immunity in vaccinated persons.
Nature. 2022 Jul;607(7918):356-359. doi: 10.1038/s41586-022-04830-x. Epub 2022 May 6.
6
Tracking SARS-CoV-2 mutations and variants through the COG-UK-Mutation Explorer.
Virus Evol. 2022 Mar 18;8(1):veac023. doi: 10.1093/ve/veac023. eCollection 2022.
8
Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa.
Nature. 2022 Mar;603(7902):679-686. doi: 10.1038/s41586-022-04411-y. Epub 2022 Jan 7.
9
BioThings SDK: a toolkit for building high-performance data APIs in biomedical research.
Bioinformatics. 2022 Mar 28;38(7):2077-2079. doi: 10.1093/bioinformatics/btac017.
10
Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2.
Nature. 2022 Feb;602(7898):676-681. doi: 10.1038/s41586-021-04388-0. Epub 2021 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验