Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK.
Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester M13 9PT, UK.
Int J Mol Sci. 2023 Feb 16;24(4):4021. doi: 10.3390/ijms24044021.
Amyotrophic lateral sclerosis (ALS) is a fatal late-onset motor neuron disease characterized by the loss of the upper and lower motor neurons. Our understanding of the molecular basis of ALS pathology remains elusive, complicating the development of efficient treatment. Gene-set analyses of genome-wide data have offered insight into the biological processes and pathways of complex diseases and can suggest new hypotheses regarding causal mechanisms. Our aim in this study was to identify and explore biological pathways and other gene sets having genomic association to ALS. Two cohorts of genomic data from the dbGaP repository were combined: (a) the largest available ALS individual-level genotype dataset (N = 12,319), and (b) a similarly sized control cohort (N = 13,210). Following comprehensive quality control pipelines, imputation and meta-analysis, we assembled a large European descent ALS-control cohort of 9244 ALS cases and 12,795 healthy controls represented by genetic variants of 19,242 genes. Multi-marker analysis of genomic annotation (MAGMA) gene-set analysis was applied to an extensive collection of 31,454 gene sets from the molecular signatures database (MSigDB). Statistically significant associations were observed for gene sets related to immune response, apoptosis, lipid metabolism, neuron differentiation, muscle cell function, synaptic plasticity and development. We also report novel interactions between gene sets, suggestive of mechanistic overlaps. A manual meta-categorization and enrichment mapping approach is used to explore the overlap of gene membership between significant gene sets, revealing a number of shared mechanisms.
肌萎缩侧索硬化症(ALS)是一种致命的迟发性运动神经元疾病,其特征是上下运动神经元的丧失。我们对 ALS 病理学的分子基础的理解仍然难以捉摸,这使得有效的治疗方法的开发变得复杂。对全基因组数据的基因集分析为复杂疾病的生物学过程和途径提供了深入的了解,并可以提出关于因果机制的新假设。我们在这项研究中的目的是确定和探索与 ALS 具有基因组关联的生物学途径和其他基因集。从 dbGaP 存储库中合并了两个基因组数据集:(a)最大的可用 ALS 个体水平基因型数据集(N = 12319),和(b)大小相似的对照队列(N = 13210)。在进行全面的质量控制管道、内插和荟萃分析后,我们组装了一个由 19242 个基因的遗传变异代表的大型欧洲裔 ALS-对照队列,其中包括 9244 例 ALS 病例和 12795 例健康对照。对广泛的 31454 个基因集进行了多标记分析基因组注释(MAGMA)基因集分析来自分子特征数据库(MSigDB)。观察到与免疫反应、细胞凋亡、脂质代谢、神经元分化、肌肉细胞功能、突触可塑性和发育相关的基因集的统计学显著关联。我们还报告了基因集之间新的相互作用,表明存在机制重叠。使用手动元分类和富集映射方法来探索显著基因集之间的基因成员重叠,揭示了一些共同的机制。