Suppr超能文献

最大化量子点-细菌杂交体中光驱动的一氧化碳和氮固定效率。

Maximizing light-driven CO and N fixation efficiency in quantum dot-bacteria hybrids.

作者信息

Guan Xun, Erşan Sevcan, Hu Xiangchen, Atallah Timothy L, Xie Yongchao, Lu Shengtao, Cao Bocheng, Sun Jingwen, Wu Ke, Huang Yu, Duan Xiangfeng, Caram Justin R, Yu Yi, Park Junyoung O, Liu Chong

机构信息

Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States.

Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States.

出版信息

Nat Catal. 2022 Nov;5(11):1019-1029. doi: 10.1038/s41929-022-00867-3. Epub 2022 Nov 10.

Abstract

Integrating light-harvesting materials with microbial biochemistry is a viable approach to produce chemicals with high efficiency from the air, water, and sunlight. Yet it remains unclear whether all absorbed photons in the materials can be transferred through the material-biology interface for solar-to-chemical production and whether the presence of materials beneficially affect the microbial metabolism. Here we report a microbe-semiconductor hybrid by interfacing CO/N-fixing bacterium with CdTe quantum dots for light-driven CO and N fixation with internal quantum efficiencies of 47.2 ± 7.3% and 7.1 ± 1.1%, respectively, reaching the biochemical limits of 46.1% and 6.9% imposed by the stoichiometry in biochemical pathways. Photophysical studies suggest fast charge-transfer kinetics at the microbe-semiconductor interfaces, while proteomics and metabolomics indicate a material-induced regulation of microbial metabolism favoring higher quantum efficiencies compared to the biological counterparts alone.

摘要

将光捕获材料与微生物生物化学相结合是一种从空气、水和阳光中高效生产化学品的可行方法。然而,目前尚不清楚材料中所有吸收的光子是否都能通过材料-生物界面转移用于太阳能到化学能的转化,以及材料的存在是否对微生物代谢有有益影响。在此,我们报道了一种微生物-半导体杂化体系,通过将固碳/固氮细菌与碲化镉量子点相结合,实现光驱动的固碳和固氮,其内部量子效率分别为47.2±7.3%和7.1±1.1%,达到了生化途径化学计量学所规定的46.1%和6.9%的生化极限。光物理研究表明,微生物-半导体界面处的电荷转移动力学很快,而蛋白质组学和代谢组学表明,与单独的生物体系相比,材料诱导的微生物代谢调控有利于提高量子效率。

相似文献

1
Maximizing light-driven CO and N fixation efficiency in quantum dot-bacteria hybrids.
Nat Catal. 2022 Nov;5(11):1019-1029. doi: 10.1038/s41929-022-00867-3. Epub 2022 Nov 10.
2
Unexpected metabolic rewiring of CO fixation in H-mediated materials-biology hybrids.
Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2308373120. doi: 10.1073/pnas.2308373120. Epub 2023 Oct 10.
3
Integrated Proteomics and Metabolomics Reveal Altered Metabolic Regulation of under Electrochemical Water-Splitting Conditions.
ACS Appl Mater Interfaces. 2024 Aug 7;16(31):40973-40979. doi: 10.1021/acsami.4c07363. Epub 2024 Jul 26.
4
Quantum Dot Assembly for Light-Driven Multielectron Redox Reactions, such as Hydrogen Evolution and CO Reduction.
Angew Chem Int Ed Engl. 2019 Aug 5;58(32):10804-10811. doi: 10.1002/anie.201901267. Epub 2019 May 16.
5
Material-Microbe Interfaces for Solar-Driven CO Bioelectrosynthesis.
Trends Biotechnol. 2020 Nov;38(11):1245-1261. doi: 10.1016/j.tibtech.2020.03.008. Epub 2020 Apr 15.
6
Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals.
Nano Lett. 2015 May 13;15(5):3634-9. doi: 10.1021/acs.nanolett.5b01254. Epub 2015 Apr 7.
7
Photocatalytic Systems for CO Reduction: Metal-Complex Photocatalysts and Their Hybrids with Photofunctional Solid Materials.
Acc Chem Res. 2022 Apr 5;55(7):978-990. doi: 10.1021/acs.accounts.1c00705. Epub 2022 Mar 7.
8
Direct Electron Transfer from Upconversion Graphene Quantum Dots to TiO Enabling Infrared Light-Driven Overall Water Splitting.
Research (Wash D C). 2022 Apr 13;2022:9781453. doi: 10.34133/2022/9781453. eCollection 2022.
9
Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis.
Acc Chem Res. 2019 Nov 19;52(11):3143-3148. doi: 10.1021/acs.accounts.9b00380. Epub 2019 Oct 8.

引用本文的文献

2
Anoxygenic photoautotrophy driven by humus and microplastics in a photosynthetic bacterium.
ISME Commun. 2025 Apr 18;5(1):ycaf067. doi: 10.1093/ismeco/ycaf067. eCollection 2025 Jan.
3
Powering the Future: Unveiling the Secrets of Semiconductor Biointerfaces in Biohybrids for Semiartificial Photosynthesis.
Artif Photosynth. 2024 Aug 23;1(1):27-49. doi: 10.1021/aps.4c00008. eCollection 2025 Jan 23.
4
Cyborg microbe biohybrids with metal-organic coating layers: Strategies, functionalisation and potential applications.
Mater Today Bio. 2025 Mar 7;31:101642. doi: 10.1016/j.mtbio.2025.101642. eCollection 2025 Apr.
5
Spatially resolved charge-transfer kinetics at the quantum dot-microbe interface using fluorescence lifetime imaging microscopy.
Proc Natl Acad Sci U S A. 2025 Mar 25;122(12):e2407987122. doi: 10.1073/pnas.2407987122. Epub 2025 Mar 17.
7
Performance evaluation and multidisciplinary analysis of catalytic fixation reactions by material-microbe hybrids.
Nat Catal. 2024 May;7(5):475-482. doi: 10.1038/s41929-024-01151-2. Epub 2024 Apr 26.
8
Polymer semiconductor films and bacteria hybrid artificial bio-leaves.
Sci Adv. 2024 Nov;10(44):eadp8567. doi: 10.1126/sciadv.adp8567. Epub 2024 Nov 1.
9
Bringing carbon to life via one-carbon metabolism.
Trends Biotechnol. 2025 Mar;43(3):572-585. doi: 10.1016/j.tibtech.2024.08.014. Epub 2024 Sep 20.
10
Synergistic material-microbe interface toward deeper anaerobic defluorination.
Proc Natl Acad Sci U S A. 2024 Jul 30;121(31):e2400525121. doi: 10.1073/pnas.2400525121. Epub 2024 Jul 23.

本文引用的文献

1
Gold nanoclusters cause selective light-driven biochemical catalysis in living nano-biohybrid organisms.
Nanoscale Adv. 2020 Apr 24;2(6):2363-2370. doi: 10.1039/d0na00017e. eCollection 2020 Jun 17.
2
Thermodynamic Constraints on Electromicrobial Protein Production.
Front Bioeng Biotechnol. 2022 Feb 21;10:820384. doi: 10.3389/fbioe.2022.820384. eCollection 2022.
3
Silver nanoparticles boost charge-extraction efficiency in microbial fuel cells.
Science. 2021 Sep 17;373(6561):1336-1340. doi: 10.1126/science.abf3427. Epub 2021 Sep 16.
5
Cysteine: an overlooked energy and carbon source.
Sci Rep. 2021 Jan 25;11(1):2139. doi: 10.1038/s41598-021-81103-z.
6
Semi-biological approaches to solar-to-chemical conversion.
Chem Soc Rev. 2020 Jul 21;49(14):4926-4952. doi: 10.1039/c9cs00496c. Epub 2020 Jun 15.
7
Electricity-powered artificial root nodule.
Nat Commun. 2020 Mar 20;11(1):1505. doi: 10.1038/s41467-020-15314-9.
8
Solar-Powered Organic Semiconductor-Bacteria Biohybrids for CO Reduction into Acetic Acid.
Angew Chem Int Ed Engl. 2020 Apr 27;59(18):7224-7229. doi: 10.1002/anie.202001047. Epub 2020 Mar 9.
9
Recent advances in single cell protein use as a feed ingredient in aquaculture.
Curr Opin Biotechnol. 2020 Feb;61:189-197. doi: 10.1016/j.copbio.2019.12.026. Epub 2020 Jan 25.
10
Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis.
Acc Chem Res. 2019 Nov 19;52(11):3143-3148. doi: 10.1021/acs.accounts.9b00380. Epub 2019 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验