Guan Xun, Erşan Sevcan, Hu Xiangchen, Atallah Timothy L, Xie Yongchao, Lu Shengtao, Cao Bocheng, Sun Jingwen, Wu Ke, Huang Yu, Duan Xiangfeng, Caram Justin R, Yu Yi, Park Junyoung O, Liu Chong
Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States.
Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States.
Nat Catal. 2022 Nov;5(11):1019-1029. doi: 10.1038/s41929-022-00867-3. Epub 2022 Nov 10.
Integrating light-harvesting materials with microbial biochemistry is a viable approach to produce chemicals with high efficiency from the air, water, and sunlight. Yet it remains unclear whether all absorbed photons in the materials can be transferred through the material-biology interface for solar-to-chemical production and whether the presence of materials beneficially affect the microbial metabolism. Here we report a microbe-semiconductor hybrid by interfacing CO/N-fixing bacterium with CdTe quantum dots for light-driven CO and N fixation with internal quantum efficiencies of 47.2 ± 7.3% and 7.1 ± 1.1%, respectively, reaching the biochemical limits of 46.1% and 6.9% imposed by the stoichiometry in biochemical pathways. Photophysical studies suggest fast charge-transfer kinetics at the microbe-semiconductor interfaces, while proteomics and metabolomics indicate a material-induced regulation of microbial metabolism favoring higher quantum efficiencies compared to the biological counterparts alone.
将光捕获材料与微生物生物化学相结合是一种从空气、水和阳光中高效生产化学品的可行方法。然而,目前尚不清楚材料中所有吸收的光子是否都能通过材料-生物界面转移用于太阳能到化学能的转化,以及材料的存在是否对微生物代谢有有益影响。在此,我们报道了一种微生物-半导体杂化体系,通过将固碳/固氮细菌与碲化镉量子点相结合,实现光驱动的固碳和固氮,其内部量子效率分别为47.2±7.3%和7.1±1.1%,达到了生化途径化学计量学所规定的46.1%和6.9%的生化极限。光物理研究表明,微生物-半导体界面处的电荷转移动力学很快,而蛋白质组学和代谢组学表明,与单独的生物体系相比,材料诱导的微生物代谢调控有利于提高量子效率。