Suppr超能文献

学习用于患者风险分层的有意义潜在空间表示:登革热和其他急性发热性疾病的模型开发与验证

Learning meaningful latent space representations for patient risk stratification: Model development and validation for dengue and other acute febrile illness.

作者信息

Hernandez Bernard, Stiff Oliver, Ming Damien K, Ho Quang Chanh, Nguyen Lam Vuong, Nguyen Minh Tuan, Nguyen Van Vinh Chau, Nguyen Minh Nguyet, Nguyen Quang Huy, Phung Khanh Lam, Dong Thi Hoai Tam, Dinh The Trung, Huynh Trung Trieu, Wills Bridget, Simmons Cameron P, Holmes Alison H, Yacoub Sophie, Georgiou Pantelis

机构信息

Centre for Bio-Inspired Technology, Imperial College London, London, United Kingdom.

Centre for Amtimicrobial Optimisation, Imperial College London, London, United Kingdom.

出版信息

Front Digit Health. 2023 Feb 22;5:1057467. doi: 10.3389/fdgth.2023.1057467. eCollection 2023.

Abstract

BACKGROUND

Increased data availability has prompted the creation of clinical decision support systems. These systems utilise clinical information to enhance health care provision, both to predict the likelihood of specific clinical outcomes or evaluate the risk of further complications. However, their adoption remains low due to concerns regarding the quality of recommendations, and a lack of clarity on how results are best obtained and presented.

METHODS

We used autoencoders capable of reducing the dimensionality of complex datasets in order to produce a 2D representation denoted as latent space to support understanding of complex clinical data. In this output, meaningful representations of individual patient profiles are spatially mapped in an unsupervised manner according to their input clinical parameters. This technique was then applied to a large real-world clinical dataset of over 12,000 patients with an illness compatible with dengue infection in Ho Chi Minh City, Vietnam between 1999 and 2021. Dengue is a systemic viral disease which exerts significant health and economic burden worldwide, and up to 5% of hospitalised patients develop life-threatening complications.

RESULTS

The latent space produced by the selected autoencoder aligns with established clinical characteristics exhibited by patients with dengue infection, as well as features of disease progression. Similar clinical phenotypes are represented close to each other in the latent space and clustered according to outcomes broadly described by the World Health Organisation dengue guidelines. Balancing distance metrics and density metrics produced results covering most of the latent space, and improved visualisation whilst preserving utility, with similar patients grouped closer together. In this case, this balance is achieved by using the sigmoid activation function and one hidden layer with three neurons, in addition to the latent dimension layer, which produces the output (Pearson, 0.840; Spearman, 0.830; Procrustes, 0.301; GMM 0.321).

CONCLUSION

This study demonstrates that when adequately configured, autoencoders can produce two-dimensional representations of a complex dataset that conserve the distance relationship between points. The output visualisation groups patients with clinically relevant features closely together and inherently supports user interpretability. Work is underway to incorporate these findings into an electronic clinical decision support system to guide individual patient management.

摘要

背景

数据可用性的提高促使了临床决策支持系统的创建。这些系统利用临床信息来改善医疗服务,既用于预测特定临床结果的可能性,也用于评估进一步并发症的风险。然而,由于对推荐质量的担忧,以及对于如何最好地获取和呈现结果缺乏清晰认识,它们的采用率仍然很低。

方法

我们使用能够降低复杂数据集维度的自动编码器,以生成一个表示为潜在空间的二维表示,以支持对复杂临床数据的理解。在此输出中,根据输入的临床参数,以无监督的方式将个体患者概况的有意义表示在空间上进行映射。然后将该技术应用于1999年至2021年间越南胡志明市超过12000例患有与登革热感染相符疾病的大型真实世界临床数据集。登革热是一种全身性病毒疾病,在全球范围内造成重大的健康和经济负担,高达5%的住院患者会出现危及生命的并发症。

结果

所选自动编码器生成的潜在空间与登革热感染患者表现出的既定临床特征以及疾病进展特征相一致。相似的临床表型在潜在空间中彼此靠近表示,并根据世界卫生组织登革热指南大致描述的结果进行聚类。平衡距离度量和密度度量产生的结果覆盖了大部分潜在空间,并在保持实用性的同时改善了可视化效果,相似的患者被聚集得更近。在这种情况下,除了产生输出的潜在维度层之外,通过使用 sigmoid 激活函数和具有三个神经元的一个隐藏层来实现这种平衡(皮尔逊相关系数,0.840;斯皮尔曼相关系数,0.830;普罗克汝斯忒斯分析,0.301;高斯混合模型,0.321)。

结论

本研究表明,在配置适当时,自动编码器可以生成复杂数据集的二维表示,该表示保留了点之间的距离关系。输出可视化将具有临床相关特征的患者紧密聚集在一起,并内在地支持用户解释性。目前正在开展工作,将这些发现纳入电子临床决策支持系统,以指导个体患者管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/576c/9992802/36ece07df018/fdgth-05-1057467-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验