Suppr超能文献

探索评分函数空间:开发药物发现的计算模型。

Exploring Scoring Function Space: Developing Computational Models for Drug Discovery.

机构信息

Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre-RS, Brazil.

CONICET-Departamento de Matemática y Física, Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina.

出版信息

Curr Med Chem. 2024;31(17):2361-2377. doi: 10.2174/0929867330666230321103731.

Abstract

BACKGROUND

The idea of scoring function space established a systems-level approach to address the development of models to predict the affinity of drug molecules by those interested in drug discovery.

OBJECTIVE

Our goal here is to review the concept of scoring function space and how to explore it to develop machine learning models to address protein-ligand binding affinity.

METHODS

We searched the articles available in PubMed related to the scoring function space. We also utilized crystallographic structures found in the protein data bank (PDB) to represent the protein space.

RESULTS

The application of systems-level approaches to address receptor-drug interactions allows us to have a holistic view of the process of drug discovery. The scoring function space adds flexibility to the process since it makes it possible to see drug discovery as a relationship involving mathematical spaces.

CONCLUSION

The application of the concept of scoring function space has provided us with an integrated view of drug discovery methods. This concept is useful during drug discovery, where we see the process as a computational search of the scoring function space to find an adequate model to predict receptor-drug binding affinity.

摘要

背景

评分函数空间的概念为药物分子亲和力预测模型的开发建立了一个系统级的方法,这引起了药物发现领域的关注。

目的

我们的目标是回顾评分函数空间的概念,以及如何探索它来开发机器学习模型以解决蛋白质-配体结合亲和力的问题。

方法

我们在 PubMed 中搜索了与评分函数空间相关的文章。我们还利用蛋白质数据库(PDB)中的晶体结构来代表蛋白质空间。

结果

应用系统级方法来解决受体-药物相互作用问题,使我们能够全面了解药物发现的过程。评分函数空间增加了该过程的灵活性,因为它使得将药物发现视为涉及数学空间的关系成为可能。

结论

评分函数空间概念的应用为我们提供了药物发现方法的综合视图。在药物发现过程中,这个概念很有用,我们将这个过程视为对评分函数空间的计算搜索,以找到一个合适的模型来预测受体-药物结合亲和力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验