Suppr超能文献

真菌β-1,3-葡聚糖合成酶 FKS1 的结构和机制见解。

Structural and mechanistic insights into fungal β-1,3-glucan synthase FKS1.

机构信息

Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

出版信息

Nature. 2023 Apr;616(7955):190-198. doi: 10.1038/s41586-023-05856-5. Epub 2023 Mar 22.

Abstract

The membrane-integrated synthase FKS is involved in the biosynthesis of β-1,3-glucan, the core component of the fungal cell wall. FKS is the target of widely prescribed antifungal drugs, including echinocandin and ibrexafungerp. Unfortunately, the mechanism of action of FKS remains enigmatic and this has hampered development of more effective medicines targeting the enzyme. Here we present the cryo-electron microscopy structures of Saccharomyces cerevisiae FKS1 and the echinocandin-resistant mutant FKS1(S643P). These structures reveal the active site of the enzyme at the membrane-cytoplasm interface and a glucan translocation path spanning the membrane bilayer. Multiple bound lipids and notable membrane distortions are observed in the FKS1 structures, suggesting active FKS1-membrane interactions. Echinocandin-resistant mutations are clustered at a region near TM5-6 and TM8 of FKS1. The structure of FKS1(S643P) reveals altered lipid arrangements in this region, suggesting a drug-resistant mechanism of the mutant enzyme. The structures, the catalytic mechanism and the molecular insights into drug-resistant mutations of FKS1 revealed in this study advance the mechanistic understanding of fungal β-1,3-glucan biosynthesis and establish a foundation for developing new antifungal drugs by targeting FKS.

摘要

膜整合合酶 FKS 参与真菌细胞壁的核心成分β-1,3-葡聚糖的生物合成。FKS 是广泛应用的抗真菌药物(包括棘白菌素和艾沙康唑)的靶标。不幸的是,FKS 的作用机制仍然神秘莫测,这阻碍了针对该酶的更有效药物的开发。在这里,我们展示了酿酒酵母 FKS1 和棘白菌素耐药突变体 FKS1(S643P)的冷冻电镜结构。这些结构揭示了酶在膜-细胞质界面的活性位点以及横跨膜双层的葡聚糖转运途径。在 FKS1 结构中观察到多个结合的脂质和明显的膜扭曲,表明 FKS1 与膜的相互作用活跃。棘白菌素耐药突变聚集在 FKS1 的 TM5-6 和 TM8 附近的区域。FKS1(S643P)的结构揭示了该区域中脂质排列的改变,表明突变酶的耐药机制。本研究中揭示的 FKS1 的结构、催化机制和耐药突变的分子见解,推进了真菌β-1,3-葡聚糖生物合成的机制理解,并为通过靶向 FKS 开发新的抗真菌药物奠定了基础。

相似文献

1
Structural and mechanistic insights into fungal β-1,3-glucan synthase FKS1.
Nature. 2023 Apr;616(7955):190-198. doi: 10.1038/s41586-023-05856-5. Epub 2023 Mar 22.
3
Cryo-EM structure of the β-1,3-glucan synthase FKS1-Rho1 complex.
Nat Commun. 2025 Feb 28;16(1):2054. doi: 10.1038/s41467-025-57152-7.
7
Differential expression and function of two homologous subunits of yeast 1,3-beta-D-glucan synthase.
Mol Cell Biol. 1995 Oct;15(10):5671-81. doi: 10.1128/MCB.15.10.5671.
8
Activity of Ibrexafungerp, a Novel Glucan Synthase Inhibitor against Candida glabrata Isolates with Mutations.
Antimicrob Agents Chemother. 2019 Oct 22;63(11). doi: 10.1128/AAC.01692-19. Print 2019 Nov.
9
Role for Fks1 in the intrinsic echinocandin resistance of Fusarium solani as evidenced by hybrid expression in Saccharomyces cerevisiae.
Antimicrob Agents Chemother. 2009 May;53(5):1772-8. doi: 10.1128/AAC.00020-09. Epub 2009 Mar 2.
10
Resistance to echinocandin-class antifungal drugs.
Drug Resist Updat. 2007 Jun;10(3):121-30. doi: 10.1016/j.drup.2007.04.002. Epub 2007 Jun 13.

引用本文的文献

1
Next-generation antifungal drugs: Mechanisms, efficacy, and clinical prospects.
Acta Pharm Sin B. 2025 Aug;15(8):3852-3887. doi: 10.1016/j.apsb.2025.06.013. Epub 2025 Jun 23.
2
Predicting natural variation in the yeast phenotypic landscape with machine learning.
Mol Syst Biol. 2025 Sep 1. doi: 10.1038/s44320-025-00136-y.
4
ER-mitochondrial crosstalk (ERMES) regulates cell wall composition in pathogenic fungi.
Arch Microbiol. 2025 Aug 27;207(10):237. doi: 10.1007/s00203-025-04448-3.
5
Collectively charting the landscape of antifungal and fungicide resistance.
Nat Microbiol. 2025 Sep;10(9):2109-2110. doi: 10.1038/s41564-025-02104-6.
8
Osh2 mediates species resistance to miltefosine by regulating zymosterol accumulation.
Antimicrob Agents Chemother. 2025 Sep 3;69(9):e0042725. doi: 10.1128/aac.00427-25. Epub 2025 Jul 23.
9
Tn-seq screens in treated with echinocandins and ibrexafungerp reveal pathways of antifungal resistance and cross-resistance.
mSphere. 2025 Jul 29;10(7):e0027025. doi: 10.1128/msphere.00270-25. Epub 2025 Jul 7.
10
Effective treatment of systemic candidiasis by synergistic targeting of cell wall synthesis.
Nat Commun. 2025 Jul 1;16(1):5532. doi: 10.1038/s41467-025-60684-7.

本文引用的文献

1
Structure, substrate recognition and initiation of hyaluronan synthase.
Nature. 2022 Apr;604(7904):195-201. doi: 10.1038/s41586-022-04534-2. Epub 2022 Mar 30.
3
The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin.
Drugs. 2021 Oct;81(15):1703-1729. doi: 10.1007/s40265-021-01611-0. Epub 2021 Oct 9.
4
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
6
Translocation of Proteins through a Distorted Lipid Bilayer.
Trends Cell Biol. 2021 Jun;31(6):473-484. doi: 10.1016/j.tcb.2021.01.002. Epub 2021 Jan 30.
7
Invasive Fungal Disease Complicating Coronavirus Disease 2019: When It Rains, It Spores.
Clin Infect Dis. 2021 Oct 5;73(7):e1645-e1648. doi: 10.1093/cid/ciaa1342.
8
UCSF ChimeraX: Structure visualization for researchers, educators, and developers.
Protein Sci. 2021 Jan;30(1):70-82. doi: 10.1002/pro.3943. Epub 2020 Oct 22.
9
Architecture of a catalytically active homotrimeric plant cellulose synthase complex.
Science. 2020 Aug 28;369(6507):1089-1094. doi: 10.1126/science.abb2978. Epub 2020 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验