Suppr超能文献

SEACells 从单细胞基因组学数据推断转录和表观基因组细胞状态。

SEACells infers transcriptional and epigenomic cellular states from single-cell genomics data.

机构信息

Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Department of Computer Science, Fu Foundation School of Engineering & Applied Science, Columbia University, New York, NY, USA.

出版信息

Nat Biotechnol. 2023 Dec;41(12):1746-1757. doi: 10.1038/s41587-023-01716-9. Epub 2023 Mar 27.

Abstract

Metacells are cell groupings derived from single-cell sequencing data that represent highly granular, distinct cell states. Here we present single-cell aggregation of cell states (SEACells), an algorithm for identifying metacells that overcome the sparsity of single-cell data while retaining heterogeneity obscured by traditional cell clustering. SEACells outperforms existing algorithms in identifying comprehensive, compact and well-separated metacells in both RNA and assay for transposase-accessible chromatin (ATAC) modalities across datasets with discrete cell types and continuous trajectories. We demonstrate the use of SEACells to improve gene-peak associations, compute ATAC gene scores and infer the activities of critical regulators during differentiation. Metacell-level analysis scales to large datasets and is particularly well suited for patient cohorts, where per-patient aggregation provides more robust units for data integration. We use our metacells to reveal expression dynamics and gradual reconfiguration of the chromatin landscape during hematopoietic differentiation and to uniquely identify CD4 T cell differentiation and activation states associated with disease onset and severity in a Coronavirus Disease 2019 (COVID-19) patient cohort.

摘要

类细胞是从单细胞测序数据中衍生出来的细胞群体,代表高度精细、独特的细胞状态。在这里,我们提出了单细胞聚集细胞状态(SEACells)的方法,这是一种识别类细胞的算法,可以克服单细胞数据的稀疏性,同时保留传统细胞聚类所掩盖的异质性。SEACells 在识别全面、紧凑和分离良好的类细胞方面优于现有算法,无论是在离散细胞类型还是连续轨迹的数据集,无论是在 RNA 还是转座酶可及染色质(ATAC)模式下。我们展示了 SEACells 在改善基因峰关联、计算 ATAC 基因分数以及推断分化过程中关键调节因子的活性方面的应用。类细胞水平的分析可以扩展到大型数据集,特别适合于患者队列,在患者队列中,每个患者的聚集为数据集成提供了更稳健的单位。我们使用我们的类细胞来揭示造血分化过程中染色质景观的表达动态和逐渐重构,并独特地识别与 2019 年冠状病毒病(COVID-19)患者队列中疾病发作和严重程度相关的 CD4 T 细胞分化和激活状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验