Delgado Jose M, Wallace Shepard Logan, Lamson Sarah W, Liu Samantha L, Shoemaker Christopher J
Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH.
Dartmouth Cancer Center, Lebanon, NH, USA.
bioRxiv. 2023 Mar 24:2023.03.22.533681. doi: 10.1101/2023.03.22.533681.
Lysosomal degradation of autophagy receptors is a common proxy for selective autophagy. However, we find that two established mitophagy receptors, BNIP3 and BNIP3L/NIX, violate this assumption. Rather, BNIP3 and NIX are constitutively delivered to lysosomes in an autophagy-independent manner. This alternative lysosomal delivery of BNIP3 accounts for nearly all of its lysosome-mediated degradation, even upon mitophagy induction. To identify how BNIP3, a tail-anchored protein in the outer mitochondrial membrane, is delivered to lysosomes, we performed a genome-wide CRISPR screen for factors influencing BNIP3 flux. By this approach, we revealed both known modifiers of BNIP3 stability as well as a pronounced reliance on endolysosomal components, including the ER membrane protein complex (EMC). Importantly, the endolysosomal system regulates BNIP3 alongside, but independent of, the ubiquitin-proteosome system (UPS). Perturbation of either mechanism is sufficient to modulate BNIP3-associated mitophagy and affect underlying cellular physiology. In short, while BNIP3 can be cleared by parallel and partially compensatory quality control pathways, non-autophagic lysosomal degradation of BNIP3 is a strong post-translational modifier of BNIP3 function. More broadly, these data reveal an unanticipated connection between mitophagy and TA protein quality control, wherein the endolysosomal system provides a critical axis for regulating cellular metabolism. Moreover, these findings extend recent models for tail-anchored protein quality control and install endosomal trafficking and lysosomal degradation in the canon of pathways that ensure tight regulation of endogenous TA protein localization.
自噬受体的溶酶体降解是选择性自噬的常见替代指标。然而,我们发现两种已确定的线粒体自噬受体BNIP3和BNIP3L/NIX违背了这一假设。相反,BNIP3和NIX以一种不依赖自噬的方式持续被运输到溶酶体。即使在诱导线粒体自噬时,BNIP3这种替代的溶酶体运输方式也几乎占了其溶酶体介导降解的全部。为了确定线粒体外膜上的尾锚定蛋白BNIP3是如何被运输到溶酶体的,我们针对影响BNIP3通量的因子进行了全基因组CRISPR筛选。通过这种方法,我们不仅揭示了已知的BNIP3稳定性调节因子,还发现其对包括内质网-溶酶体膜蛋白复合物(EMC)在内的内溶酶体成分有显著依赖性。重要的是,内溶酶体系统在泛素-蛋白酶体系统(UPS)之外且独立于该系统调节BNIP3。对这两种机制中任何一种的干扰都足以调节与BNIP3相关的线粒体自噬并影响潜在的细胞生理功能。简而言之,虽然BNIP3可以通过平行且部分补偿性的质量控制途径被清除,但BNIP3的非自噬性溶酶体降解是BNIP3功能的一种强大的翻译后修饰因子。更广泛地说,这些数据揭示了线粒体自噬与尾锚定蛋白质量控制之间意想不到的联系,其中内溶酶体系统为调节细胞代谢提供了一个关键轴。此外,这些发现扩展了最近关于尾锚定蛋白质量控制的模型,并将内体运输和溶酶体降解纳入确保对内源尾锚定蛋白定位进行严格调控的途径规范中。