Suppr超能文献

百里香酚修饰的金纳米颗粒治愈对抗生素耐药的临床细菌感染。

Thymol-Decorated Gold Nanoparticles for Curing Clinical Infections Caused by Bacteria Resistant to Last-Resort Antibiotics.

机构信息

Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.

School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.

出版信息

mSphere. 2023 Jun 22;8(3):e0054922. doi: 10.1128/msphere.00549-22. Epub 2023 Apr 5.

Abstract

Multidrug-resistant bacteria pose a tremendous challenge to public health worldwide. Many bacteria resistant to last-resort antibiotics due to antibiotic misuse have been recently reported, which may give rise to serious infections without effective treatment. Therefore, it is imperative to develop novel antimicrobial strategies. Natural phenols are known to increase bacterial membrane permeability and are potential candidates for the development of new antimicrobial agents. In this study, gold nanoparticles (Au NPs) carrying natural phenols were synthesized to combat bacteria resistant to last-resort antibiotics. Transmission electron microscopy, dynamic light scattering, zeta potential, and UV-visible spectra were used to characterize the synthesized Au NPs, which showed good monodispersity and uniform particle size. Evaluation of antibacterial activity using the broth microdilution method revealed that thymol-decorated gold nanoparticles (Thymol_Au NPs) had a broad antibacterial spectrum and higher bactericidal effects than last-resort antibiotics against last-resort-antibiotic-resistant bacteria. Considering the underlying antibacterial mechanism, the results showed that Thymol_Au NPs destroyed bacterial cell membranes. Further, Thymol_Au NPs were effective in treating mouse abdominal infections and exhibited acceptable biocompatibility without any significant toxicity in cell viability and histopathological assays, respectively, at most bactericidal concentrations. However, attention should be paid to changes in white blood cells, reticulocyte percentages, and superoxide dismutase activity during Thymol_Au NP treatment. In conclusion, Thymol_Au NPs have the potential for treating clinical infections caused by bacteria resistant to last-resort antibiotics. Excessive use of antibiotics can lead to bacterial resistance and the development of multidrug-resistant bacteria. Antibiotic misuse can also promote resistance against last-resort antibiotics. It is thus crucial to develop alternatives to antibiotics to retard the development of multidrug resistance. In recent years, the use of several nanodosage forms of antibacterial drugs has been investigated. These agents kill bacteria through a variety of mechanisms and avoid the problem of resistance. Among them, Au NPs, which are safer to use for medical applications than other metal nanoparticles, have attracted interest as potential antibacterial agents. To combat bacterial resistance to last-resort antibiotics and mitigate the problem of antimicrobial resistance, it is important and meaningful to develop antimicrobial agents based on Au NPs.

摘要

耐多药细菌对全球公共卫生构成了巨大挑战。由于抗生素滥用,最近报道了许多对最后一线抗生素具有耐药性的细菌,这可能导致严重的感染而没有有效的治疗方法。因此,开发新型抗菌策略迫在眉睫。天然酚类物质已知可增加细菌细胞膜的通透性,是开发新型抗菌剂的潜在候选物。在这项研究中,合成了携带天然酚类物质的金纳米粒子(Au NPs)来对抗对最后一线抗生素具有耐药性的细菌。使用透射电子显微镜、动态光散射、Zeta 电位和紫外可见光谱对合成的 Au NPs 进行了表征,结果表明 Au NPs 具有良好的单分散性和均匀的粒径。使用肉汤微量稀释法评估抗菌活性的结果表明,与最后一线抗生素相比,百里香酚修饰的金纳米粒子(Thymol_Au NPs)对最后一线抗生素耐药的细菌具有广谱抗菌活性和更高的杀菌效果。考虑到潜在的抗菌机制,结果表明 Thymol_Au NPs 破坏了细菌细胞膜。此外,Thymol_Au NPs 在治疗小鼠腹部感染方面非常有效,并且在细胞活力和组织病理学测定中,在大多数杀菌浓度下均没有表现出明显的毒性,表现出可接受的生物相容性。然而,在 Thymol_Au NP 治疗期间,应注意白细胞、网织红细胞百分比和超氧化物歧化酶活性的变化。总之,Thymol_Au NPs 具有治疗对最后一线抗生素耐药的细菌引起的临床感染的潜力。抗生素的过度使用会导致细菌耐药性和多药耐药菌的产生。抗生素的滥用也会导致对最后一线抗生素的耐药性。因此,开发抗生素替代品以延缓多药耐药性的发展至关重要。近年来,已经研究了几种纳米剂量形式的抗菌药物。这些药物通过多种机制杀死细菌,避免了耐药性问题。其中,金纳米粒子(Au NPs)由于其在医疗应用中比其他金属纳米粒子更安全,因此作为潜在的抗菌剂引起了人们的兴趣。为了对抗细菌对最后一线抗生素的耐药性并减轻抗菌药物耐药性问题,基于 Au NPs 开发抗菌剂具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa15/10286717/26554804dcdf/msphere.00549-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验