Suppr超能文献

当前和未来中东和北非地区热相关死亡趋势:基于贝叶斯推理和调整偏差的统计降尺度 CMIP6(SSP 为基础)数据的健康影响评估。

Current and future trends in heat-related mortality in the MENA region: a health impact assessment with bias-adjusted statistically downscaled CMIP6 (SSP-based) data and Bayesian inference.

机构信息

Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK.

Environmental Predictions Department, Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia, Cyprus.

出版信息

Lancet Planet Health. 2023 Apr;7(4):e282-e290. doi: 10.1016/S2542-5196(23)00045-1.

Abstract

BACKGROUND

The Middle East and North Africa (MENA) is one of the regions that is most vulnerable to the negative effects of climate change, yet the potential public health impacts have been underexplored compared to other regions. We aimed to examine one aspect of these impacts, heat-related mortality, by quantifying the current and future burden in the MENA region and identifying the most vulnerable countries.

METHODS

We did a health impact assessment using an ensemble of bias-adjusted statistically downscaled Coupled Model Intercomparison Project phase 6 (CMIP6) data based on four Shared Socioeconomic Pathway (SSP) scenarios (SSP1-2·6 [consistent with a 2°C global warming scenario], SSP2-4·5 [medium pathway scenario], SSP3-7·0 [pessimistic scenario], and SSP5-8·5 [high emissions scenario]) and Bayesian inference methods. Assessments were based on apparent temperature-mortality relationships specific to each climate subregion of MENA based on Koppen-Geiger climate type classification, and unique thresholds were characterised for each 50 km grid cell in the region. Future annual heat-related mortality was estimated for the period 2021-2100. Estimates were also presented with population held constant to quantify the contribution of projected demographic changes to the future heat-mortality burden.

FINDINGS

The average annual heat-related death rate across all MENA countries is currently 2·1 per 100 000 people. Under the two high emissions scenarios (SSP3-7·0 and SSP5-8·5), most of the MENA region will have experienced substantial warming by the 2060s. Annual heat-related deaths of 123·4 per 100 000 people are projected for MENA by 2100 under a high emissions scenario (SSP5-8·5), although this rate would be reduced by more than 80% (to 20·3 heat-related deaths per 100 000 people per year) if global warming could be limited to 2°C (ie, under the SSP1-2·6 scenario). Large increases are also expected by 2100 under the SSP3-7·0 scenario (89·8 heat-related deaths per 100 000 people per year) due to the high population growth projected under this pathway. Projections in MENA are far higher than previously observed in other regions, with Iran expected to be the most vulnerable country.

INTERPRETATION

Stronger climate change mitigation and adaptation policies are needed to avoid these heat-related mortality impacts. Since much of this increase will be driven by population changes, demographic policies and healthy ageing will also be key to successful adaptation.

FUNDING

National Institute for Health Research, EU Horizon 2020.

摘要

背景

中东和北非(MENA)是最容易受到气候变化负面影响的地区之一,但与其他地区相比,其潜在的公共卫生影响尚未得到充分探索。我们旨在通过量化 MENA 地区当前和未来的负担,并确定最脆弱的国家,来研究这些影响之一,即与热有关的死亡率。

方法

我们使用基于四个共享社会经济路径(SSP)情景(SSP1-2.6[与 2°C 全球变暖情景一致]、SSP2-4.5[中等路径情景]、SSP3-7.0[悲观情景]和 SSP5-8.5[高排放情景])的经偏差调整的统计降尺度耦合模型比较计划阶段 6(CMIP6)数据的综合数据集进行健康影响评估,并使用贝叶斯推理方法。评估是基于根据科彭-盖革气候类型分类为 MENA 每个气候子区域确定的明显温度-死亡率关系进行的,并且为该区域的每个 50 km 网格单元确定了独特的阈值。未来的年与热有关的死亡率是根据 2021-2100 年期间的预测得出的。还提出了人口保持不变的估计值,以量化预测的人口变化对未来热死亡率负担的贡献。

结果

目前,整个 MENA 国家的平均年与热有关的死亡率为每 10 万人 2.1 人。在两个高排放情景(SSP3-7.0 和 SSP5-8.5)下,到 2060 年代,MENA 的大部分地区将经历大幅升温。根据高排放情景(SSP5-8.5),到 2100 年,MENA 地区预计每年每 10 万人中有 123.4 人死于与热有关的疾病,尽管如果全球变暖可以限制在 2°C(即 SSP1-2.6 情景),这一比率将减少 80%以上(每年每 10 万人中有 20.3 人死于与热有关的疾病)。由于预计这条途径下人口增长较高,到 2100 年,SSP3-7.0 情景下的预期增长率也将大幅上升(每年每 10 万人中有 89.8 人死于与热有关的疾病)。MENA 的预测远远高于以前在其他地区观察到的预测,伊朗预计将是最脆弱的国家。

解释

需要采取更强有力的气候变化缓解和适应政策,以避免这些与热有关的死亡率影响。由于这种增长的大部分将是由人口变化驱动的,因此人口政策和健康老龄化也将是成功适应的关键。

资金

英国国家卫生研究所,欧盟地平线 2020。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验