Suppr超能文献

应对抗生素耐药性:计算方法能否解决生物学问题?

Addressing antibiotic resistance: computational answers to a biological problem?

机构信息

Liggins Institute, University of Auckland, Auckland, New Zealand.

Department of Microbiology, University of Helsinki, Helsinki, Finland.

出版信息

Curr Opin Microbiol. 2023 Aug;74:102305. doi: 10.1016/j.mib.2023.102305. Epub 2023 Apr 7.

Abstract

The increasing prevalence of infections caused by antibiotic-resistant bacteria is a global healthcare crisis. Understanding the spread of resistance is predicated on the surveillance of antibiotic resistance genes within an environment. Bioinformatics and artificial intelligence (AI) methods applied to metagenomic sequencing data offer the capacity to detect known and infer yet-unknown resistance mechanisms, and predict future outbreaks of antibiotic-resistant infections. Machine learning methods, in particular, could revive the waning antibiotic discovery pipeline by helping to predict the molecular structure and function of antibiotic resistance compounds, and optimising their interactions with target proteins. Consequently, AI has the capacity to play a central role in guiding antibiotic stewardship and future clinical decision-making around antibiotic resistance.

摘要

抗生素耐药菌引起的感染日益流行,是全球医疗保健领域面临的一大危机。要了解耐药性的传播,必须对环境中的抗生素耐药基因进行监测。将生物信息学和人工智能 (AI) 方法应用于宏基因组测序数据,可以检测已知和推断出的耐药机制,并预测未来的抗生素耐药性感染爆发。特别是机器学习方法,通过帮助预测抗生素耐药化合物的分子结构和功能,并优化它们与靶蛋白的相互作用,有可能重振日渐式微的抗生素发现管道。因此,人工智能有能力在指导抗生素管理和未来抗生素耐药方面的临床决策方面发挥核心作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验