Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas, USA.
School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
J Am Med Inform Assoc. 2023 Jul 19;30(8):1408-1417. doi: 10.1093/jamia/ocad068.
Suicide presents a major public health challenge worldwide, affecting people across the lifespan. While previous studies revealed strong associations between Social Determinants of Health (SDoH) and suicide deaths, existing evidence is limited by the reliance on structured data. To resolve this, we aim to adapt a suicide-specific SDoH ontology (Suicide-SDoHO) and use natural language processing (NLP) to effectively identify individual-level SDoH-related social risks from death investigation narratives.
We used the latest National Violent Death Report System (NVDRS), which contains 267 804 victim suicide data from 2003 to 2019. After adapting the Suicide-SDoHO, we developed a transformer-based model to identify SDoH-related circumstances and crises in death investigation narratives. We applied our model retrospectively to annotate narratives whose crisis variables were not coded in NVDRS. The crisis rates were calculated as the percentage of the group's total suicide population with the crisis present.
The Suicide-SDoHO contains 57 fine-grained circumstances in a hierarchical structure. Our classifier achieves AUCs of 0.966 and 0.942 for classifying circumstances and crises, respectively. Through the crisis trend analysis, we observed that not everyone is equally affected by SDoH-related social risks. For the economic stability crisis, our result showed a significant increase in crisis rate in 2007-2009, parallel with the Great Recession.
This is the first study curating a Suicide-SDoHO using death investigation narratives. We showcased that our model can effectively classify SDoH-related social risks through NLP approaches. We hope our study will facilitate the understanding of suicide crises and inform effective prevention strategies.
自杀是一个全球性的重大公共卫生挑战,影响着各个年龄段的人群。虽然先前的研究揭示了健康的社会决定因素(SDoH)与自杀死亡之间存在很强的关联,但现有证据受到对结构化数据的依赖的限制。为了解决这个问题,我们旨在改编一个特定于自杀的 SDoH 本体(Suicide-SDoHO),并使用自然语言处理(NLP)技术从死亡调查叙述中有效地识别个体层面与 SDoH 相关的社会风险。
我们使用了最新的国家暴力死亡报告系统(NVDRS),该系统包含了 2003 年至 2019 年 267804 名自杀受害者的数据。在改编 Suicide-SDoHO 之后,我们开发了一个基于转换器的模型,用于识别死亡调查叙述中的 SDoH 相关情况和危机。我们将该模型回溯应用于标注 NVDRS 中未编码危机变量的叙述。危机发生率的计算方法是具有危机的群体的自杀总人数的百分比。
Suicide-SDoHO 包含了 57 个分层结构的精细情况。我们的分类器在分类情况和危机方面的 AUC 分别达到了 0.966 和 0.942。通过危机趋势分析,我们观察到并非每个人都受到 SDoH 相关社会风险的同等影响。对于经济稳定危机,我们的结果显示,在 2007-2009 年期间,随着大衰退的出现,危机发生率显著增加。
这是第一项使用死亡调查叙述来编纂 Suicide-SDoHO 的研究。我们展示了我们的模型可以通过 NLP 方法有效地分类与 SDoH 相关的社会风险。我们希望我们的研究将有助于理解自杀危机,并为有效的预防策略提供信息。