Suppr超能文献

一种从死亡调查报告中识别 SDoH 相关情况和自杀危机的自然语言处理方法。

An NLP approach to identify SDoH-related circumstance and suicide crisis from death investigation narratives.

机构信息

Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas, USA.

School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA.

出版信息

J Am Med Inform Assoc. 2023 Jul 19;30(8):1408-1417. doi: 10.1093/jamia/ocad068.

Abstract

OBJECTIVES

Suicide presents a major public health challenge worldwide, affecting people across the lifespan. While previous studies revealed strong associations between Social Determinants of Health (SDoH) and suicide deaths, existing evidence is limited by the reliance on structured data. To resolve this, we aim to adapt a suicide-specific SDoH ontology (Suicide-SDoHO) and use natural language processing (NLP) to effectively identify individual-level SDoH-related social risks from death investigation narratives.

MATERIALS AND METHODS

We used the latest National Violent Death Report System (NVDRS), which contains 267 804 victim suicide data from 2003 to 2019. After adapting the Suicide-SDoHO, we developed a transformer-based model to identify SDoH-related circumstances and crises in death investigation narratives. We applied our model retrospectively to annotate narratives whose crisis variables were not coded in NVDRS. The crisis rates were calculated as the percentage of the group's total suicide population with the crisis present.

RESULTS

The Suicide-SDoHO contains 57 fine-grained circumstances in a hierarchical structure. Our classifier achieves AUCs of 0.966 and 0.942 for classifying circumstances and crises, respectively. Through the crisis trend analysis, we observed that not everyone is equally affected by SDoH-related social risks. For the economic stability crisis, our result showed a significant increase in crisis rate in 2007-2009, parallel with the Great Recession.

CONCLUSIONS

This is the first study curating a Suicide-SDoHO using death investigation narratives. We showcased that our model can effectively classify SDoH-related social risks through NLP approaches. We hope our study will facilitate the understanding of suicide crises and inform effective prevention strategies.

摘要

目的

自杀是一个全球性的重大公共卫生挑战,影响着各个年龄段的人群。虽然先前的研究揭示了健康的社会决定因素(SDoH)与自杀死亡之间存在很强的关联,但现有证据受到对结构化数据的依赖的限制。为了解决这个问题,我们旨在改编一个特定于自杀的 SDoH 本体(Suicide-SDoHO),并使用自然语言处理(NLP)技术从死亡调查叙述中有效地识别个体层面与 SDoH 相关的社会风险。

材料和方法

我们使用了最新的国家暴力死亡报告系统(NVDRS),该系统包含了 2003 年至 2019 年 267804 名自杀受害者的数据。在改编 Suicide-SDoHO 之后,我们开发了一个基于转换器的模型,用于识别死亡调查叙述中的 SDoH 相关情况和危机。我们将该模型回溯应用于标注 NVDRS 中未编码危机变量的叙述。危机发生率的计算方法是具有危机的群体的自杀总人数的百分比。

结果

Suicide-SDoHO 包含了 57 个分层结构的精细情况。我们的分类器在分类情况和危机方面的 AUC 分别达到了 0.966 和 0.942。通过危机趋势分析,我们观察到并非每个人都受到 SDoH 相关社会风险的同等影响。对于经济稳定危机,我们的结果显示,在 2007-2009 年期间,随着大衰退的出现,危机发生率显著增加。

结论

这是第一项使用死亡调查叙述来编纂 Suicide-SDoHO 的研究。我们展示了我们的模型可以通过 NLP 方法有效地分类与 SDoH 相关的社会风险。我们希望我们的研究将有助于理解自杀危机,并为有效的预防策略提供信息。

相似文献

1
An NLP approach to identify SDoH-related circumstance and suicide crisis from death investigation narratives.
J Am Med Inform Assoc. 2023 Jul 19;30(8):1408-1417. doi: 10.1093/jamia/ocad068.
3
Surveillance for Violent Deaths -
National Violent Death Reporting System, 18 States, 2014.
MMWR Surveill Summ. 2018 Feb 2;67(2):1-36. doi: 10.15585/mmwr.ss6702a1.
5
Surveillance for Violent Deaths - National Violent Death Reporting System, 17 States, 2013.
MMWR Surveill Summ. 2016 Aug 19;65(10):1-42. doi: 10.15585/mmwr.ss6510a1.
8
Systematic design and data-driven evaluation of social determinants of health ontology (SDoHO).
J Am Med Inform Assoc. 2023 Aug 18;30(9):1465-1473. doi: 10.1093/jamia/ocad096.

引用本文的文献

3
Applications of Large Language Models in the Field of Suicide Prevention: Scoping Review.
J Med Internet Res. 2025 Jan 23;27:e63126. doi: 10.2196/63126.
4
Automatically extracting social determinants of health for suicide: a narrative literature review.
Npj Ment Health Res. 2024 Nov 6;3(1):51. doi: 10.1038/s44184-024-00087-6.
6
Analyzing Social Factors to Enhance Suicide Prevention Across Population Groups.
Proc (IEEE Int Conf Healthc Inform). 2024 Jun;2024:189-199. doi: 10.1109/ichi61247.2024.00032. Epub 2024 Aug 22.
7
An exploration of knowledge-organizing technologies to advance transdisciplinary back pain research.
JOR Spine. 2023 Nov 29;6(4):e1300. doi: 10.1002/jsp2.1300. eCollection 2023 Dec.
8
Advancements in extracting social determinants of health information from narrative text.
J Am Med Inform Assoc. 2023 Jul 19;30(8):1363-1366. doi: 10.1093/jamia/ocad121.

本文引用的文献

1
Systematic design and data-driven evaluation of social determinants of health ontology (SDoHO).
J Am Med Inform Assoc. 2023 Aug 18;30(9):1465-1473. doi: 10.1093/jamia/ocad096.
2
Differences in overdose deaths by intent: Unintentional & suicide drug poisonings in North Carolina, 2015-2019.
Prev Med. 2022 Oct;163:107217. doi: 10.1016/j.ypmed.2022.107217. Epub 2022 Aug 23.
3
Natural language processing: state of the art, current trends and challenges.
Multimed Tools Appl. 2023;82(3):3713-3744. doi: 10.1007/s11042-022-13428-4. Epub 2022 Jul 14.
4
Trustworthy assertion classification through prompting.
J Biomed Inform. 2022 Aug;132:104139. doi: 10.1016/j.jbi.2022.104139. Epub 2022 Jul 8.
7
Temporal Trends in Suicidal Ideation and Attempts Among US Adolescents by Sex and Race/Ethnicity, 1991-2019.
JAMA Netw Open. 2021 Jun 1;4(6):e2113513. doi: 10.1001/jamanetworkopen.2021.13513.
9
Temporal Trends and Disparities in Suicidal Behaviors by Sex and Sexual Identity Among Asian American Adolescents.
JAMA Netw Open. 2021 Apr 1;4(4):e214498. doi: 10.1001/jamanetworkopen.2021.4498.
10
Annotating social determinants of health using active learning, and characterizing determinants using neural event extraction.
J Biomed Inform. 2021 Jan;113:103631. doi: 10.1016/j.jbi.2020.103631. Epub 2020 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验