Suppr超能文献

机器学习软件在系统评价标题筛选中的应用:一项方法学研究。

Usefulness of machine learning softwares to screen titles of systematic reviews: a methodological study.

机构信息

Post-Graduate Program of Health Sciences, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

Faculty of Health Sciences, The University of Sydney, Sydney, NSW, Australia.

出版信息

Syst Rev. 2023 Apr 15;12(1):68. doi: 10.1186/s13643-023-02231-3.

Abstract

OBJECTIVE

To investigate the usefulness and performance metrics of three freely-available softwares (Rayyan®, Abstrackr® and Colandr®) for title screening in systematic reviews.

STUDY DESIGN AND SETTING

In this methodological study, the usefulness of softwares to screen titles in systematic reviews was investigated by the comparison between the number of titles identified by software-assisted screening and those by manual screening using a previously published systematic review. To test the performance metrics, sensitivity, specificity, false negative rate, proportion missed, workload and timing savings were calculated. A purposely built survey was used to evaluate the rater's experiences regarding the softwares' performances.

RESULTS

Rayyan® was the most sensitive software and raters correctly identified 78% of the true positives. All three softwares were specific and raters correctly identified 99% of the true negatives. They also had similar values for precision, proportion missed, workload and timing savings. Rayyan®, Abstrackr® and Colandr® had 21%, 39% and 34% of false negatives rates, respectively. Rayyan presented the best performance (35/40) according to the raters.

CONCLUSION

Rayyan®, Abstrackr® and Colandr® are useful tools and provided good metric performance results for systematic title screening. Rayyan® appears to be the best ranked on the quantitative and on the raters' perspective evaluation. The most important finding of this study is that the use of software to screen titles does not remove any title that would meet the inclusion criteria for the final review, being valuable resources to facilitate the screening process.

摘要

目的

研究三种免费软件(Rayyan®、Abstrackr®和 Colandr®)在系统评价标题筛选中的实用性和性能指标。

研究设计和设置

在这项方法学研究中,通过比较软件辅助筛选和手动筛选确定的标题数量,研究了软件在系统评价标题筛选中的实用性。为了测试性能指标,计算了灵敏度、特异性、假阴性率、漏检率、工作负荷和时间节省。专门设计了一项调查来评估评估者对软件性能的体验。

结果

Rayyan®是最敏感的软件,评估者正确识别了 78%的真阳性。三种软件的特异性都很高,评估者正确识别了 99%的真阴性。它们的精度、漏检率、工作负荷和时间节省也相似。Rayyan®、Abstrackr®和 Colandr®的假阴性率分别为 21%、39%和 34%。根据评估者的评价,Rayyan®表现最佳(35/40)。

结论

Rayyan®、Abstrackr®和 Colandr®是有用的工具,为系统标题筛选提供了良好的度量性能结果。从定量和评估者的角度来看,Rayyan®似乎是排名最高的。这项研究的最重要发现是,使用软件筛选标题不会遗漏任何符合最终综述纳入标准的标题,这是促进筛选过程的有价值的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8454/10105467/9c687bb40ae5/13643_2023_2231_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验