Suppr超能文献

水果作物中 L-抗坏血酸的代谢和调节。

L-Ascorbic acid metabolism and regulation in fruit crops.

机构信息

National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.

Kiwifruit Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China.

出版信息

Plant Physiol. 2023 Jul 3;192(3):1684-1695. doi: 10.1093/plphys/kiad241.

Abstract

L-Ascorbic acid (AsA) is more commonly known as vitamin C and is an indispensable compound for human health. As a major antioxidant, AsA not only maintains redox balance and resists biological and abiotic stress but also regulates plant growth, induces flowering, and delays senescence through complex signal transduction networks. However, AsA content varies greatly in horticultural crops, especially in fruit crops. The AsA content of the highest species is approximately 1,800 times higher than that of the lowest species. There have been significant advancements in the understanding of AsA accumulation in the past 20 years. The most noteworthy accomplishment was the identification of the critical rate-limiting genes for the 2 major AsA synthesis pathways (L-galactose pathway and D-galacturonic acid pathway) in fruit crops. The rate-limiting genes of the former are GMP, GME, GGP, and GPP, and the rate-limiting gene of the latter is GalUR. Moreover, APX, MDHAR, and DHAR are also regarded as key genes in degradation and regeneration pathways. Interestingly, some of these key genes are sensitive to environmental factors, such as GGP being induced by light. The efficiency of enhancing AsA content is high by editing upstream open reading frames (uORF) of the key genes and constructing multi-gene expression vectors. In summary, the AsA metabolism has been well understood in fruit crops, but the transport mechanism of AsA and the synergistic improvement of AsA and other traits is less known, which will be the focus of AsA research in fruit crops.

摘要

L-抗坏血酸(AsA),又名维生素 C,是人类健康不可或缺的化合物。作为一种主要的抗氧化剂,AsA 不仅维持着氧化还原平衡,抵抗生物和非生物胁迫,还通过复杂的信号转导网络调节植物的生长、诱导开花和延缓衰老。然而,园艺作物,特别是水果作物中的 AsA 含量差异很大。最高物种的 AsA 含量大约是最低物种的 1800 倍。在过去的 20 年中,人们对 AsA 积累的理解有了显著的进展。最值得注意的成就是在水果作物中确定了 2 条主要 AsA 合成途径(L-半乳糖途径和 D-半乳糖醛酸途径)的关键限速基因。前者的限速基因是 GMP、GME、GGP 和 GPP,后者的限速基因是 GalUR。此外,APX、MDHAR 和 DHAR 也被认为是降解和再生途径中的关键基因。有趣的是,其中一些关键基因对环境因素敏感,例如 GGP 受光诱导。通过编辑关键基因的上游开放阅读框(uORF)和构建多基因表达载体,可以有效地提高 AsA 含量。总之,水果作物中的 AsA 代谢已经得到了很好的理解,但 AsA 的运输机制以及与其他性状的协同改善还知之甚少,这将是水果作物中 AsA 研究的重点。

相似文献

1
L-Ascorbic acid metabolism and regulation in fruit crops.
Plant Physiol. 2023 Jul 3;192(3):1684-1695. doi: 10.1093/plphys/kiad241.
3
Comparison of ascorbic acid biosynthesis in different tissues of three non-heading Chinese cabbage cultivars.
Plant Physiol Biochem. 2013 Dec;73:229-36. doi: 10.1016/j.plaphy.2013.10.005. Epub 2013 Oct 10.
4
L-ascorbic acid metabolism in an ascorbate-rich kiwifruit (Actinidia. Eriantha Benth.) cv. 'White' during postharvest.
Plant Physiol Biochem. 2018 Mar;124:20-28. doi: 10.1016/j.plaphy.2018.01.005. Epub 2018 Jan 6.
5
L-Ascorbic acid metabolism during fruit development in an ascorbate-rich fruit crop chestnut rose (Rosa roxburghii Tratt).
J Plant Physiol. 2014 Sep 1;171(14):1205-16. doi: 10.1016/j.jplph.2014.03.010. Epub 2014 Apr 15.
7
Light avoidance reduces ascorbic acid accumulation in the peel of Citrus fruit.
Plant Sci. 2015 Feb;231:138-47. doi: 10.1016/j.plantsci.2014.12.002. Epub 2014 Dec 5.
8
10
Regulation of L-ascorbic acid content in strawberry fruits.
J Exp Bot. 2011 Aug;62(12):4191-201. doi: 10.1093/jxb/err122. Epub 2011 May 11.

引用本文的文献

2
Comparative Metabolomics Analysis of Four Pineapple ( L. Merr) Varieties with Different Fruit Quality.
Plants (Basel). 2025 Aug 3;14(15):2400. doi: 10.3390/plants14152400.
3
Genome-wide association study reveals the genetic basis of vitamin C content in rapeseed ( L.) seedlings.
Front Plant Sci. 2025 Jul 23;16:1649023. doi: 10.3389/fpls.2025.1649023. eCollection 2025.
4
Molecular mechanisms of high levels of L-ascorbic acid accumulation in chestnut rose fruits.
Plant Commun. 2025 Aug 11;6(8):101419. doi: 10.1016/j.xplc.2025.101419. Epub 2025 Jun 16.
8
Arazá: Mc Vaught as a Potential Functional Food.
Foods. 2024 Jul 23;13(15):2310. doi: 10.3390/foods13152310.
10
Ascorbate peroxidase in fruits and modulation of its activity by reactive species.
J Exp Bot. 2024 May 3;75(9):2716-2732. doi: 10.1093/jxb/erae092.

本文引用的文献

2
Genome-Wide Analysis of Ascorbic Acid Metabolism Related Genes in × and Its Expression Pattern Analysis in Strawberry Fruits.
Front Plant Sci. 2022 Jul 6;13:954505. doi: 10.3389/fpls.2022.954505. eCollection 2022.
3
Metabolism and Regulation of Ascorbic Acid in Fruits.
Plants (Basel). 2022 Jun 18;11(12):1602. doi: 10.3390/plants11121602.
5
Control of fruit softening and Ascorbic acid accumulation by manipulation of SlIMP3 in tomato.
Plant Biotechnol J. 2022 Jun;20(6):1213-1225. doi: 10.1111/pbi.13804. Epub 2022 Mar 15.
7
Comparative Transcriptome Analysis Revealed the Key Genes Regulating Ascorbic Acid Synthesis in .
Int J Mol Sci. 2021 Nov 29;22(23):12894. doi: 10.3390/ijms222312894.
8
Metabolome and Transcriptome Reveal Novel Formation Mechanism of Early Mature Trait in Kiwifruit ().
Front Plant Sci. 2021 Nov 19;12:760496. doi: 10.3389/fpls.2021.760496. eCollection 2021.
10
Genome-Wide Association Studies Provide Insights into the Genetic Determination of Flower and Leaf Traits of .
Front Plant Sci. 2021 Aug 20;12:730890. doi: 10.3389/fpls.2021.730890. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验