Suppr超能文献

机器学习驱动的多尺度建模:利用下一代仿真基础设施跨越尺度。

Machine Learning-Driven Multiscale Modeling: Bridging the Scales with a Next-Generation Simulation Infrastructure.

机构信息

Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.

Computing Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.

出版信息

J Chem Theory Comput. 2023 May 9;19(9):2658-2675. doi: 10.1021/acs.jctc.2c01018. Epub 2023 Apr 19.

Abstract

Interdependence across time and length scales is common in biology, where atomic interactions can impact larger-scale phenomenon. Such dependence is especially true for a well-known cancer signaling pathway, where the membrane-bound RAS protein binds an effector protein called RAF. To capture the driving forces that bring RAS and RAF (represented as two domains, RBD and CRD) together on the plasma membrane, simulations with the ability to calculate atomic detail while having long time and large length- scales are needed. The Multiscale Machine-Learned Modeling Infrastructure (MuMMI) is able to resolve RAS/RAF protein-membrane interactions that identify specific lipid-protein fingerprints that enhance protein orientations viable for effector binding. MuMMI is a fully automated, ensemble-based multiscale approach connecting three resolution scales: (1) the coarsest scale is a continuum model able to simulate milliseconds of time for a 1 μm membrane, (2) the middle scale is a coarse-grained (CG) Martini bead model to explore protein-lipid interactions, and (3) the finest scale is an all-atom (AA) model capturing specific interactions between lipids and proteins. MuMMI dynamically couples adjacent scales in a pairwise manner using machine learning (ML). The dynamic coupling allows for better sampling of the refined scale from the adjacent coarse scale (forward) and on-the-fly feedback to improve the fidelity of the coarser scale from the adjacent refined scale (backward). MuMMI operates efficiently at any scale, from a few compute nodes to the largest supercomputers in the world, and is generalizable to simulate different systems. As computing resources continue to increase and multiscale methods continue to advance, fully automated multiscale simulations (like MuMMI) will be commonly used to address complex science questions.

摘要

跨时间和长度尺度的相互依存在生物学中很常见,原子相互作用可以影响更大尺度的现象。这种依赖性在一个著名的癌症信号通路中尤其如此,在该通路中,膜结合的 RAS 蛋白与一种效应蛋白 RAF 结合。为了捕捉将 RAS 和 RAF(表示为两个结构域,RBD 和 CRD)带到质膜上的驱动力,需要具有计算原子细节的能力,同时具有长的时间和大的长度尺度的模拟。多尺度机器学习建模基础架构 (MuMMI) 能够解析 RAS/RAF 蛋白-膜相互作用,确定增强效应蛋白结合的特定脂质-蛋白指纹。MuMMI 是一种完全自动化的、基于集合的多尺度方法,连接三个分辨率尺度:(1)最粗尺度是一个能够模拟 1 μm 膜毫秒时间的连续体模型,(2)中间尺度是一个粗粒化 (CG) Martini 珠模型,用于探索蛋白-脂质相互作用,(3)最细尺度是一个全原子 (AA) 模型,捕获脂质和蛋白之间的特定相互作用。MuMMI 使用机器学习 (ML) 以成对的方式动态连接相邻的尺度。动态耦合允许从相邻的粗尺度(向前)更好地采样细化尺度,并实时反馈以提高相邻细化尺度的保真度(向后)。MuMMI 在任何尺度上都能高效运行,从几个计算节点到世界上最大的超级计算机,并且可推广到模拟不同的系统。随着计算资源的持续增加和多尺度方法的不断进步,全自动多尺度模拟(如 MuMMI)将被广泛用于解决复杂的科学问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41ca/10173464/e2eec68708b7/ct2c01018_0002.jpg

相似文献

1
Machine Learning-Driven Multiscale Modeling: Bridging the Scales with a Next-Generation Simulation Infrastructure.
J Chem Theory Comput. 2023 May 9;19(9):2658-2675. doi: 10.1021/acs.jctc.2c01018. Epub 2023 Apr 19.
2
Asynchronous Reciprocal Coupling of Martini 2.2 Coarse-Grained and CHARMM36 All-Atom Simulations in an Automated Multiscale Framework.
J Chem Theory Comput. 2022 Aug 9;18(8):5025-5045. doi: 10.1021/acs.jctc.2c00168. Epub 2022 Jul 22.
3
Machine learning-driven multiscale modeling reveals lipid-dependent dynamics of RAS signaling proteins.
Proc Natl Acad Sci U S A. 2022 Jan 4;119(1). doi: 10.1073/pnas.2113297119.
4
Molecular recognition of RAS/RAF complex at the membrane: Role of RAF cysteine-rich domain.
Sci Rep. 2018 May 31;8(1):8461. doi: 10.1038/s41598-018-26832-4.
5
Molecular dynamics simulations of the dimerization of transmembrane alpha-helices.
Acc Chem Res. 2010 Mar 16;43(3):388-96. doi: 10.1021/ar900211k.
6
Exploring CRD mobility during RAS/RAF engagement at the membrane.
Biophys J. 2022 Oct 4;121(19):3630-3650. doi: 10.1016/j.bpj.2022.06.035. Epub 2022 Jul 1.
7
Membrane lipids drive formation of KRAS4b-RAF1 RBDCRD nanoclusters on the membrane.
Commun Biol. 2024 Feb 28;7(1):242. doi: 10.1038/s42003-024-05916-0.
8
Backmapping triangulated surfaces to coarse-grained membrane models.
Nat Commun. 2020 May 8;11(1):2296. doi: 10.1038/s41467-020-16094-y.
9
Multiscale molecular dynamics simulations of membrane proteins.
Methods Mol Biol. 2013;924:635-57. doi: 10.1007/978-1-62703-017-5_25.
10
Molecular dynamics simulations of membrane proteins and their interactions: from nanoscale to mesoscale.
Curr Opin Struct Biol. 2016 Oct;40:8-16. doi: 10.1016/j.sbi.2016.06.007. Epub 2016 Jun 21.

引用本文的文献

1
Full-scale modeling of chemical experiments.
Smart Mol. 2023 Oct 30;2(1):e20230010. doi: 10.1002/smo.20230010. eCollection 2024 Mar.
2
Enhanced Exploration of Protein Conformational Space through Integration of Ultra-Coarse-Grained Models to Multiscale Workflows.
J Phys Chem B. 2025 May 22;129(20):4895-4903. doi: 10.1021/acs.jpcb.4c08622. Epub 2025 May 8.
3
Pioneer in Molecular Biology: Conformational Ensembles in Molecular Recognition, Allostery, and Cell Function.
J Mol Biol. 2025 Jun 1;437(11):169044. doi: 10.1016/j.jmb.2025.169044. Epub 2025 Feb 25.
5
Generating Protein Structures for Pathway Discovery Using Deep Learning.
J Chem Theory Comput. 2024 Oct 22;20(20):8795-8806. doi: 10.1021/acs.jctc.4c00816. Epub 2024 Oct 10.
6
A Vision for the Future of Multiscale Modeling.
ACS Phys Chem Au. 2024 Mar 4;4(3):202-225. doi: 10.1021/acsphyschemau.3c00080. eCollection 2024 May 22.
7
Membrane lipids drive formation of KRAS4b-RAF1 RBDCRD nanoclusters on the membrane.
Commun Biol. 2024 Feb 28;7(1):242. doi: 10.1038/s42003-024-05916-0.
9
MLatom 3: A Platform for Machine Learning-Enhanced Computational Chemistry Simulations and Workflows.
J Chem Theory Comput. 2024 Feb 13;20(3):1193-1213. doi: 10.1021/acs.jctc.3c01203. Epub 2024 Jan 25.

本文引用的文献

1
AI-driven multiscale simulations illuminate mechanisms of SARS-CoV-2 spike dynamics.
Int J High Perform Comput Appl. 2021 Sep;35(5):432-451. doi: 10.1177/10943420211006452.
2
Asynchronous Reciprocal Coupling of Martini 2.2 Coarse-Grained and CHARMM36 All-Atom Simulations in an Automated Multiscale Framework.
J Chem Theory Comput. 2022 Aug 9;18(8):5025-5045. doi: 10.1021/acs.jctc.2c00168. Epub 2022 Jul 22.
3
Exploring CRD mobility during RAS/RAF engagement at the membrane.
Biophys J. 2022 Oct 4;121(19):3630-3650. doi: 10.1016/j.bpj.2022.06.035. Epub 2022 Jul 1.
4
Machine learning-driven multiscale modeling reveals lipid-dependent dynamics of RAS signaling proteins.
Proc Natl Acad Sci U S A. 2022 Jan 4;119(1). doi: 10.1073/pnas.2113297119.
5
GLIMPS: A Machine Learning Approach to Resolution Transformation for Multiscale Modeling.
J Chem Theory Comput. 2021 Dec 14;17(12):7930-7937. doi: 10.1021/acs.jctc.1c00735. Epub 2021 Dec 1.
6
From adaptive resolution to molecular dynamics of open systems.
Eur Phys J B. 2021;94(9):189. doi: 10.1140/epjb/s10051-021-00193-w. Epub 2021 Sep 23.
7
Multiscale Enhanced Sampling Using Machine Learning.
Life (Basel). 2021 Oct 12;11(10):1076. doi: 10.3390/life11101076.
8
Mcl-1 and Bok transmembrane domains: Unexpected players in the modulation of apoptosis.
Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):27980-27988. doi: 10.1073/pnas.2008885117. Epub 2020 Oct 22.
9
Capturing Biologically Complex Tissue-Specific Membranes at Different Levels of Compositional Complexity.
J Phys Chem B. 2020 Sep 10;124(36):7819-7829. doi: 10.1021/acs.jpcb.0c03368. Epub 2020 Aug 31.
10
ddcMD: A fully GPU-accelerated molecular dynamics program for the Martini force field.
J Chem Phys. 2020 Jul 28;153(4):045103. doi: 10.1063/5.0014500.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验