Physical and Life Sciences (PLS) Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.
Computing Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.
J Chem Theory Comput. 2023 May 9;19(9):2658-2675. doi: 10.1021/acs.jctc.2c01018. Epub 2023 Apr 19.
Interdependence across time and length scales is common in biology, where atomic interactions can impact larger-scale phenomenon. Such dependence is especially true for a well-known cancer signaling pathway, where the membrane-bound RAS protein binds an effector protein called RAF. To capture the driving forces that bring RAS and RAF (represented as two domains, RBD and CRD) together on the plasma membrane, simulations with the ability to calculate atomic detail while having long time and large length- scales are needed. The Multiscale Machine-Learned Modeling Infrastructure (MuMMI) is able to resolve RAS/RAF protein-membrane interactions that identify specific lipid-protein fingerprints that enhance protein orientations viable for effector binding. MuMMI is a fully automated, ensemble-based multiscale approach connecting three resolution scales: (1) the coarsest scale is a continuum model able to simulate milliseconds of time for a 1 μm membrane, (2) the middle scale is a coarse-grained (CG) Martini bead model to explore protein-lipid interactions, and (3) the finest scale is an all-atom (AA) model capturing specific interactions between lipids and proteins. MuMMI dynamically couples adjacent scales in a pairwise manner using machine learning (ML). The dynamic coupling allows for better sampling of the refined scale from the adjacent coarse scale (forward) and on-the-fly feedback to improve the fidelity of the coarser scale from the adjacent refined scale (backward). MuMMI operates efficiently at any scale, from a few compute nodes to the largest supercomputers in the world, and is generalizable to simulate different systems. As computing resources continue to increase and multiscale methods continue to advance, fully automated multiscale simulations (like MuMMI) will be commonly used to address complex science questions.
跨时间和长度尺度的相互依存在生物学中很常见,原子相互作用可以影响更大尺度的现象。这种依赖性在一个著名的癌症信号通路中尤其如此,在该通路中,膜结合的 RAS 蛋白与一种效应蛋白 RAF 结合。为了捕捉将 RAS 和 RAF(表示为两个结构域,RBD 和 CRD)带到质膜上的驱动力,需要具有计算原子细节的能力,同时具有长的时间和大的长度尺度的模拟。多尺度机器学习建模基础架构 (MuMMI) 能够解析 RAS/RAF 蛋白-膜相互作用,确定增强效应蛋白结合的特定脂质-蛋白指纹。MuMMI 是一种完全自动化的、基于集合的多尺度方法,连接三个分辨率尺度:(1)最粗尺度是一个能够模拟 1 μm 膜毫秒时间的连续体模型,(2)中间尺度是一个粗粒化 (CG) Martini 珠模型,用于探索蛋白-脂质相互作用,(3)最细尺度是一个全原子 (AA) 模型,捕获脂质和蛋白之间的特定相互作用。MuMMI 使用机器学习 (ML) 以成对的方式动态连接相邻的尺度。动态耦合允许从相邻的粗尺度(向前)更好地采样细化尺度,并实时反馈以提高相邻细化尺度的保真度(向后)。MuMMI 在任何尺度上都能高效运行,从几个计算节点到世界上最大的超级计算机,并且可推广到模拟不同的系统。随着计算资源的持续增加和多尺度方法的不断进步,全自动多尺度模拟(如 MuMMI)将被广泛用于解决复杂的科学问题。